

中国科学院数学与系统科学研究院 | 国家数学与交叉科学中心

FORECASTING DIRECTION OF CHINA SECURITY INDEX 300 MOVEMENT WITH LEAST SQUARES SUPPORT VECTOR MACHINE

Shuai Wang, Wei Shang

Academy of Mathematics and Systems Sciences Chinese Academy of Sciences *Beijing, China , June 2014*

Background & Motivation

A challenging task to forecast the direction of stock index movement.

Due to the complexity of the financial market & its various affected factors

Features of Financial Market

- Complicated
- •Dynamic
- Evolutionary
- Nonlinear

Affected Factors of Financial Market

- Political events
- Economic fundamentals
- Investors' sentiment
- •Other markets' movements

Background & Motivation

An accurate prediction of stock index movement

Policy Makers

Investors

provide reference value for the investors to make effective strategy

Also for policy maker to monitor stock market

CSI 300 Index

The first equity index launched by the two exchanges (Shanghai and Shenzhen) together.

CSI 300 Index (000300.SS) - Shanghai * Follow 2,147.28 + 8.70(0.40%) 3:04AM EDT

Prev Close:	2,155.98	Day's Range:	2,145.75 - 2,160.03
Open:	2,154.40	52wk Range:	2,086.97 - 2,644.36

Quotes delayed, except where indicated otherwise. Currency in CNY. CSI 300 Index

replicate the performance of
 300 stocks traded in
 the Shanghai and Shenzhen stock
 exchanges.

Covers about **one seventh** of all stocks listed on China's stock markets and about **60%** of the markets' value.

2010

2012

The underlying index of China security

Index 300 future ---the only financial

It is able to reflect the price fluctuation and performance of China's Shanghai and Shenzhen stock markets

2008

3.000

2,000

1,000

818

2014

Details of CSI 300 Index

Ping An Insurance Group Co of China Ltd3.92%Citic Securities Co Ltd 3.64%China Merchants Bank Co Ltd 2.98%China Petroleum & Chemical Group 2.89%Bank of Communications Co Ltd 2.60%Baoshan Iron & Steel Co Ltd 2.49%China Yangtze Power Co Ltd 2.39%China Minsheng Banking Corp Ltd 2.24%Shanghai Pudong Development Bank 2.23%China Vanke Co Ltd 1.93%	The ten largest companies	.The sector weightings
	Ping An Insurance Group Co of China Ltd 3.92% Citic Securities Co Ltd 3.64% China Merchants Bank Co Ltd 2.98% China Petroleum & Chemical Group 2.89% Bank of Communications Co Ltd 2.60% Baoshan Iron & Steel Co Ltd 2.49% China Yangtze Power Co Ltd 2.39% China Minsheng Banking Corp Ltd 2.24% Shanghai Pudong Development Bank 2.23% China Vanke Co Ltd 1.93%	Finance 36.38% Industry 15.93% Basic Materials 13.55% Energy 9.75% Utilities 7.53% Consumer Goods 7.01% Capital 4.90% Information Technology 2.11% Telecommunications 1.50% Health 1.42%

ETF

since April 8, 2005. Its value is normalized relative to a base of 1000 on December 31, 2004. Ratings P ETFs Tracking The CSI 300 Index - ETF List

ETFs tracking the CSI 300 Index are presented in the following table.

<u>Symbol</u>	<u>Name</u>	Price	Change	<u>Assets *</u> <u>▼</u>	<u>Avg</u> Vol	<u>YTD</u>
ASHR	db X-trackers Harvest CSI 300 China A-Shares Fund	\$22.05	+0.68%	\$148,988	147,941	-10.58%
<u>PEK</u>	Market Vectors China A-Shares ETF	\$27.56	+0.95%	\$30,074	10,589	-13.39%

Classification

✓ Predicts categorical class labels(discrete or nominal)

✓ Classifies records (constructs a model) based on the training set including the class Labels and classifying attributes and then uses the rules(model) to classify new records

A two-step process

Model construction

Describe a set of predetermined classes

Each sample is assumed to belong to a predefined class, as determined by the class label attribute

> The set of samples used for model construction is training set.

> The model is represented as classification rules, decision tree, or mathematical formulae.

Model usage

Classify future or unknown objects

- Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model.
 - Accuracy rate is the percentage of **testing set** samples that are correctly classified by the model.
 - Test set is independent of training set, otherwise over-fitting will occur
- If the accuracy is acceptable, use the model to classify data samples whose class labels are not known.

SVC Mathematically

Given a set of linearly separable

LSSVC

SVC : a high computational complexity specially when computing large-scale QP problem

$$\min \quad \frac{1}{2} w^{T} w + \frac{1}{2} \gamma \sum_{i=1}^{l} \xi_{i}^{2}$$

s.t. $y_{i} = w^{T} \varphi(x_{i}) + b + \xi_{i}, (i = 1, 2, ..., l)$

where ξ_i are the error variables and γ is the penalty parameter The final classification solution

$$f(x) = \operatorname{Sign}\left(\sum_{i=1}^{l} w_i K(x, x_i) + b\right)$$

K (•) is the kernel function which can simplify the use of a mapping.

Gaussian RBF kernel function $K(x, x_i) = \exp\left(\left\|x - x_i\right\|/2\sigma^2\right)$

Benchmark methods

AI: PNN

Probabilistic Neural Network (PNN) was proposed by Specht in 1990, and it built on the Bayesian strategy of classification.

Discriminant analysis

➢Discriminant analysis is a statistical technique to study the differences between two or more groups of objects with respect to several input (independent) variables.

Linear Discriminant Analysis
 (LDA) and Quadratic
 Discriminant Analysis (QDA)
 are employed

Data Descriptions

Data range : April 27, 2005 to February 15, 2012, with a total of 1653 observations.

X: Indicator name

MA10 (Simple 10-day moving average)

WMA10 (Weighted 10-day moving average)

MTM (Momentmum)

Stochastic K %

Stochastic D %

RSI (Relative Strength Index)

MACD

(Moving average convergence divergence)

WR (Larry William's R %)

A/D Oscillator (Accumulation/Distribution)

CCI (Commodity Channel Index)

•**Training dataset:** the former 80% of the data set (1322 observations to determine the specifications of the models and parameters.

• Testing dataset: the rest set of the data (331 observations) to evaluate the performances among various forecasting models.

- Class one:Y=0. China Security Index 300 at time t is lower than that at time t-I
- Class two :Y=I. China Security Index 300 at time t is higher than that at time t-I

Formula of Indicators

Indicator name,	Formula
MA10 (Simple 10-day moving average)	$\frac{C_t + C_{t-1} + \dots + C_{t-9}}{10} \phi^2$
WMA10 (Weighted 10-day moving average)+	$\frac{n \times C_t + (n-1) \times C_{t-1} + \dots + C_{t-9}}{(n+(n-1)+\dots+1)} e^{t}$
MTM (Momentmum)	$C_t - C_{t-n} +$
StochasticK‰	$\frac{C_t - LL_{t-n}}{HH_{t-n} - LL_{t-n}} \times 100 \text{ W}$ where LL_t and HH_t mean the lowest low and highest high in the last t days,
Stochastic D %	$\left(\sum_{i=0}^{n-1} \% K_{t-i}\right) / n \sim$
RSI (Relative Strength Index).	$\frac{100}{1 + \left(\left(\sum_{i=0}^{n-1} Up_{t-i}\right)/n\right) / \left(\left(\sum_{i=0}^{n-1} Dw_{t-i}\right)/n\right)} $ where Up_t means upward change and Dw_t means downward change at time t .
MACD +/ (Moving average convergence divergence)+/	$2 \times (DIFF - DEA),^{\psi}$ where $DIFF = EMA(C_t, 12) - EMA(C_t, 26), DEA = EMA(DIFF, 9),^{\psi}$ and $EMA(X, n) = (2 \times X + (n-1) \times EMA(X, n-1))/(n+1),^{\psi}$
WR (Larry William's R %),	$\frac{H_n - C_t}{H_n - L_n} \times 100 \ \text{e}$
A/D Oscillator (Accumulation/Distribution)	$\frac{H_t - C_{t-1}}{H_t - L_t} e^t$
CCI (Commodity Channel Index)↔	$\begin{split} M_t &- SM_t / 0.015D_t \text{ where } M_t = \left(H_t + L_t + C_t\right), SM_t = \left(\sum_{i=1}^n M_{t-i+1}\right) / n , \\ \text{and } D_t &= \left(\sum_{i=1}^n \left M_{t-i+1} - SM_t\right \right) / n , \end{split}$

Note: C_t is the closing price at time t, L_t is the low price at time t, H_t is the high price at time t.

Indicators

Summary statistics

Indicator name	Max	Min	Mean	Standard
				deviation
MA10	5726.471	839.746	2699.383	1181.275
WMA10	5765.633	837.377	2700.802	1180.632
MTM	896.980	-1076.050	11.177	230.996
<i>K</i> %	99.100	4.353	57.956	27.473
D %	97.723	6.928	57.880	25.055
RSI	97.361	5.215	53.606	21.060
MACD	185.662	-186.016	0.163	43.577
WR	100.000	0.000	41.957	33.485
A/D Oscillator	658.684	-129.784	49.296	47.018
CCI	292.600	-373.868	13.333	110.922

	Year				Tatal				
	2005	2006	2007	2008	2009	2010	2011	2012	Iotai
Decrease	81	85	82	137	86	121	129	13	734
%	48.21	35.27	33.88	55.69	35.25	50.00	52.87	50.00	44.40
Increase	87	156	160	109	158	121	115	13	919
%	51.79	64.73	66.12	44.31	64.75	50.00	47.13	50.00	55.60
Total	168	241	242	246	244	242	244	26	1653

Empirical Results

≻The LSSVC performs best in all these direction forecasting methods in terms of training data and testing data.

The other artificial intelligence (AI) model, PNN performs better than Discriminant analysis in terms of training data, but has inferior performance in testing data. It may because of the neural networks are vulnerable to the over-fitting problem.

≻QDA performs better than LDA in terms of testing data, despite of inferior prediction performance of training data. The main reason may be that LDA assumes equal covariance in

all of the classes, which is not consistent with the properties of input variables.

Evaluation indicator	LSSVC	PNN	QDA	LDA
Training accuracy	92.97	92.89	86.87	88.18
Testing accuracy	89.12	80.97	87.92	87.31

McNemar Test

McNemar Test:

 \checkmark one degree of freedom chi-square test which is applied to 2 × 2 contingency tables with a dichotomous variable, to determine whether the row and column marginal frequencies are equal.

 \checkmark The null hypothesis assumes that the total rows are equal to the sum of columns in the contingency table.

Comparison

McNemar values (p-values) for comparison of performance.

	PNN	QDA	LDA
LSSVC	0.679(0.410)	4.654(0.031)	10.321 (0.001)
PNN		0.327(0.568)	2.326(0.127)

► LSSVC outperforms LDA and QDA model at 1% and 5% significant level respectively.

≻ However, LSSVM does not significantly outperform PNN.

> PNN and two Discriminant analysis (QDA and LDA) do not significantly outperform each other.

Summary

Main Works	 Applied LSSVC to predict the movement of CSI 300 index. Compared the performance with PNN and two Discriminant analysis
Results of	•LSSVC performs best in all these direction forecasting methods in terms of training data and testing data.
Study	•PNN performs better than Discriminant analysis in terms of training data, but has inferior performance in testing data.
Main Conclusion	•LSSVC is a promising method to forecast the direction of stock index.