Regime-dependent robust risk measures with application in portfolio selection

Zhiping Chen

Xi'an Jiaotong University, P.R.China

TEL:86-29-82663741, E-mail: zchen@mail.xjtu.edu.cn

(Joint work with Jia Liu)

ITQM, Moscow, June 4, 2014

イロト イボト イヨト イヨ

Outline

- Introduction
- Regime-dependent robust risk measures
- Application to portfolio selection problem
- Empirical illustrations
- Conclusions

< ロト < 同ト < ヨト < ヨト

イロト イポト イヨト イヨト

Risk measure

Traditional risk measure

- The traditional risk measure can be regarded as a aggregation function *ρ* : *L_p*(𝔅) → *R* with respect to the probability *P*, here 1 ≤ *p* < ∞.
- The famous risk measure VaR can be described as follows:

```
VaR(x) = \min \gamma s.t. Prob\{\gamma \le x\} \le \epsilon,
```

 $\epsilon \in (0, 1]$ is a given loss tolerant probability (say, 5%).

• The computation of risk measure relies on the underlying distribution *P* of *x*.

イロト イボト イヨト イヨト

Unknown distribution

- Traditional distribution assumptions, such as normal or student's t, does not fit the financial data well.
- Fully distributional information is hardly known in practice.
- Deal with the unknown distribution
 - Sample average approximation (Shapiro et al. [2009]) Generate samples to represent the original distribution.
 - Worst-case estimation (Bertsimas et al. [2011]) Make decisions with the worst sample.
 - Distributional robust (El Ghaoui et al. [2003]) Finding a worst estimation among all possible known distributions.

ヘロト ヘヨト ヘヨト ヘヨト

Distributional robust risk measure

We can estimate ρ by assuming *P* belongs to an uncertainty set \mathscr{P} . This gives us the following worst-case risk measure:

Definition 1

For given risk measure ρ , the worst-case risk measure with respect to \mathscr{P} is defined as $w\rho(x) \triangleq \sup_{P \in \mathscr{P}} \rho(x)$.

- By constructing different uncertainty sets \mathscr{P} , we can derive different versions of worst-case risk measures.
- Typical uncertainty sets proposed in the literature include the box uncertainty, the ellipsoidal uncertainty, and the mixture distribution uncertainty.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Researches on Distribution robust risk measure

Worst-case variance

• Lobo and Boyd [1999] proposed a worst-case analysis with respect to uncertain variance, and demonstrated the worst-case variance problem is a seme-definite program.

Worst-case VaR

 El Ghaoui et al. [2003] considered the worst-case value-at-risk (VaR) with uncertain first and second order moments, and showed the worst-case VaR constraint is equivalent to a second order cone constraint.

ヘロト ヘヨト ヘヨト ヘヨ

Researches on Distribution robust risk measure Mean-wrVaR model (Cont'd)

Worst-case CVaR

- Zhu and Fukushima [2009] considered the portfolio selection models with worst-case CVaR constraints, and solved it with discrete samples.
- Chen et al. [2011] considered the worst-case lower partial moments and worst-case conditional value-at-risk (CVaR) with respect to the first two order moments, and derived a tight bound for these two problems.

Regime-switching environment

Regime switching

- We consider the uncertainty set which is regime-dependent
- Regime switching describes the trend of macro economy and it can reflect dynamic correlations of return rates in different economic cycles
- We assume there are *K* regimes possibly appearing.
- We assume the regime switching is Markovian with the following transition probability matrix:

$$P^{s} = \begin{pmatrix} P^{s}_{s^{1}s^{1}} & P^{s}_{s^{1}s^{2}} & \cdots & P^{s}_{s^{1}s^{K}} \\ P^{s}_{s} & P^{s}_{s} & \cdots & P^{s}_{s^{2}s^{K}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ P^{s}_{s^{K}s^{1}} & P^{s}_{s^{K}s^{2}} & \cdots & P^{s}_{s^{K}s^{K}} \end{pmatrix},$$

< ロト < 同ト < ヨト < ヨト

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Regime-dependent risk measure

- We assume that uncertainty sets $\mathscr{P}(s)$ are associated with the possible regime $s \in S$, *S* is the regime set.
- Given a particular regime *s*, the regime-dependent worst-case risk measure can be defined as

 $w\rho^{s}(x) \triangleq \sup_{P \in \mathscr{P}(s)} \rho(x).$

Combine the sub risks into one

- One takes the greatest risk measure value among all the possible regimes
- The other mixes the sub risks together with respect to their occurring probabilities

Regime-dependent risk measure (Cont'd)

We define them as follows:

Worst regime risk measure

For the risk measure ρ , the worst regime risk measure with respect to the regime set *S* is defined as

$$wr\rho(x) \triangleq \sup_{s \in S} w\rho^s(x) = \sup_{s \in S} \sup_{P \in \mathscr{P}(s)} \rho(x).$$

Mixed worst-case risk measure

For the risk measure ρ , the mixed worst-case risk measure with respect to the regime set *S* is defined as

$$mw\rho(x) \triangleq E_s[w\rho^s(x)] = E_s[\sup_{P \in \mathscr{P}(s)} \rho(x)] = \sum_s P^s_{s_0,s}(\sup_{P \in \mathscr{P}(s)} \rho(x)).$$

・ロト ・四ト ・ヨト・ヨト・

Properties of the regime-dependent risk measures

Proposition 1

Worst regime risk measure is equivalent to worst-case risk measure with respect to the uncertainty set $\overline{\mathscr{P}} = \bigcup_{s \in S} \mathscr{P}(s)$

 $wr\rho(x) = \sup_{P \in \bar{\mathscr{P}}} \rho(x).$

Theorem of coherency

If $\rho(\cdot)$ is a coherent risk measure, then $wr\rho(\cdot)$ and $mw\rho(\cdot)$ associated with any regime set *S* and uncertainty sets $\mathscr{P}(s)$, $s \in S$, are both coherent risk measures.

Application to portfolio selection problem

Market setting

- There are *n* risky assets in the security market
- $w = [w_1, w_2, ..., w_n]^T$: The proportion vector of the wealth invested in *n* assets
- $r = [r_1, r_2, ..., r_n]^T$: The random return rates of *n* assets
- $x = -r^{\mathrm{T}}w$: The loss function
- Regime-dependent uncertainty set:

$$\mathscr{P}(s) = \{P|E_P[\xi] = \mu(s), \sigma_P^2(\xi) = \Gamma(s)\}, \ s \in S,$$
(1)

Such uncertainty set contains all possible distribution with given mean and variance under particular regime.

Mean-wrVaR model

The objective function:

$$\max_{w} E(x) - \lambda \cdot wrVaR(x)$$

= $\max_{w} E(x) - \lambda \cdot \sup_{s \in S} \sup_{P \in \mathscr{P}(s)} VaR_P(x).$ (2)

Constraints on portfolio:

$$e^T w = 1, (3)$$

$$\underline{w} \le w_i \le \overline{w}, \ i = 1, ..., n, \tag{4}$$

ヘロト ヘヨト ヘヨト ヘヨト

イロト イポト イヨト イヨト

Mean-wrVaR model (Cont'd)

By introducing an auxiliary variable *y*, Mean-wrVaR model (2-4) can be expressed as:

$$\max \quad E(-r^{\mathrm{T}}w) - \lambda y \tag{5}$$

s.t.
$$\sup_{P \in \mathscr{P}(s)} VaR_P(-r^{\mathrm{T}}w) \le y, \ s \in S,$$
 (6)

$$e^T w = 1, (7)$$

$$\underline{w} \le w_i \le \overline{w}, \ i = 1, ..., n.$$
(8)

< ロト < 同ト < ヨト < ヨト

Mean-wrVaR model (Cont'd)

By transforming the worst-case VaR constraint (6) with respect to the uncertainty set (1), (5-8) is equivalent to

$$\max \quad E_s(\mu(s))^T w - \lambda y$$

(SOCP1): s.t. $\kappa(\epsilon) ||\Gamma^{1/2}(s)w||_2 - \mu^T(s)w \le y, \ s \in S,$
 $e^T w = 1,$
 $\underline{w} \le w_i \le \overline{w}, \ i = 1, ..., n,$

which is a second order cone programming.

ヘロト ヘヨト ヘヨト ヘヨト

Mean-mwVaR model

Replacing wrVaR in (2) by mwVaR, we have the mean-wrVaR portfolio selection model

$$\max \quad E(-r^{\mathrm{T}}w) - \lambda \cdot E_{s}[\sup_{P \in \mathscr{P}(s)} VaR_{P}(-r^{\mathrm{T}}w)], \tag{9}$$

s.t.
$$e^T w = 1$$
, (10)

$$\underline{w} \le w_i \le \overline{w}, \ i = 1, ..., n.$$
(11)

イロト イポト イヨト イヨト

Mean-mwVaR model (Cont'd)

Again, problem (9)-(11) can be transformed into the following second order cone program:

$$\max \quad E_s(\mu(s) - y(s))$$
(SOCP2): s.t. $\kappa(\epsilon) ||\Gamma^{1/2}(s)w||_2 - \mu^{\mathrm{T}}(s)w \le y(s), \ s \in S,$
 $e^T w = 1,$
 $\underline{w} \le w_i \le \overline{w}, \ i = 1, ..., n.$

SOCP can be efficiently solved by some commercial optimization softwares, such as MOSEK.

< ロト < 同ト < ヨト < ヨト

Empirical illustrations

- We choose 10 stocks from different industries in American stock markets
- We use adjusted daily close-prices of these stocks on every Monday to compute their weekly logarithmic return rates from February 14, 1977 to January 30, 2012
- We divide the market into three regimes: the bull regime; the consolidation regime and the bear regime
- Assume the regime transition probability is stationary:

$$P = \begin{bmatrix} 0.9475 & 0.0336 & 0.0189 \\ 0.3333 & 0.3148 & 0.3519 \\ 0.0471 & 0.0634 & 0.8895 \end{bmatrix}.$$

イロト イボト イヨト イヨト

Statistics information under three regimes

Table: expected return rates (%) under different regimes and the total sample

	DIS	DOW	ED	GE	IBM	MRK	MRO	MSI	PEP	JNJ
$\mu(s^1)$	0.099	0.068	0.112	0.095	0.078	0.101	0.116	0.076	0.115	0.110
$\mu(s^2)$	0.026	-0.079	0.134	-0.042	-0.142	0.108	0.172	0.070	0.170	0.1235
$\mu(s^3)$	-0.205	-0.185	0.094	-0.161	0.010	-0.076	-0.037	-0.261	-0.029	0.031
μ	0.099	0.068	0.112	0.095	0.078	0.101	0.116	0.076	0.115	0.1105

Both first and second order moments have significant difference among different regimes. (The estimated covariance matrices are omitted.)

Optimal portfolios

- Then we can find the optimal portfolios of mean-wrVaR, mean-mwVaR models by solving (SOCP1), (SOCP2).
- Besides, we show the optimal portfolio of mean-wVaR model in el Ghaoui et al. [2003] as a comparison.

	DIS	DOW	ED	GE	IBM	MRK	MRO	MSI	PEP	JNJ
$w^*_{WVaR}(s_0)$	0.000	0.000	0.300	0.000	0.300	0.000	0.000	0.000	0.260	0.140
$w^*_{wrVaR}(s_0)$	0.000	0.000	0.300	0.000	0.300	0.000	0.000	0.000	0.154	0.245
$w^*_{mwVaR}(s^1)$	0.000	0.000	0.300	0.000	0.300	0.000	0.087	0.000	0.300	0.012
$w^*_{mwVaR}(s^2)$	0.000	0.000	0.300	0.000	0.300	0.000	0.000	0.000	0.300	0.100
$w^*_{mwVaR}(s^3)$	0.000	0.000	0.300	0.000	0.300	0.000	0.000	0.000	0.246	0.153

Table: optimal portfolios under wrVaR, mvVaR and wVaR

The confidence level is $\epsilon = 0.05$, the trade-off parameter is $\lambda = 1$, the lower bound and upper bound of portfolio weights are 0 and 0.3, respectively.

イロト イボト イヨト イヨト

Optimal portfolios (Con'd)

- Both the optimal portfolios of mean-wVaR model and mean-wrVaR model do not rely on the current regime.
- The mean-mwVaR model provides us with three optimal portfolios under three different regimes.
- That is because the estimation of mwVaR relies on the regime appearing probability in the future.
- The strategy derived under such mixed robust models reveals more information about market regimes than the traditional worst-case risk measures.

A (1) < A (2) < A (2)</p>

Performance of the optimal portfolios

• We compare the performance of three robust models by computing the expected return rate, the variance of the optimal portfolio, and the optimal estimation of the robust VaR.

Table: robust VaR value, expected return and variance under different robust portfolio selection models

	wVaR(s_0)	$wrVaR(s_0)$	$mwVaR(s^1)$	$mwVaR(s^2)$	$mwVaR(s^3)$
robust VaR value	0.0891	0.1078	0.0809	0.0923	0.1053
expected return (%)	0.1028	0.1023	0.1035	0.1030	0.1027
variance	6.3332e-5	6.2984e-5	6.4675e-5	6.4770e-5	6.3017e-5

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Performance of the optimal portfolios (Con'd)

- The largest estimation on the robust VaR is attained under the mean-wrVaR model. And it leads to the most conservative strategy.
- The estimation of robust VaR has significant difference with respect to three regimes under the mean-mwVaR model.
- The expected return of mean-mwVaR model under the bull or consolidation regime is significantly larger than that of either the mean-wVaR model or the mean-wrVaR model, while the corresponding variance does not increase too much with regard to its magnitude
- wrVaR is suitable for conservative investors; mwVaR is more suitable for investors who focus on the market trend.

イロト イヨト イヨト

Conclusions

- We propose in this paper two classes of robust risk measures, which are time-dependent and coherent.
- We apply VaR to construct robust portfolio selection models and show that they can be transformed into second order cone programs.
- Empirical illustrations show that our new models can flexibly reflect the influence of different market regimes on the investment return and risk.
- We can also adopt other risk measures, such as CVaR, as the basic risk measure $\rho(\cdot)$ in our new risk measure definitions to construct other robust risk measures.
- Another interesting topic is to extend the results in this paper to the multi-period situation.

Thank You Very Much for Your Attention!

イロト イポト イヨト イヨト