### Improve the Classifier Accuracy for Continuous Attributes in Biomedical Datasets using a New Discretization Method

### G.Madhu Prof.T.V.Rajinikanth, Prof. A.Govardhan E-mail: madhu\_g@vnrvjiet.in

### **Motivation**

 Many real-world datasets are predominately consist of continuous attributes also called quantitative attributes.

7/7/20

- These type of datasets are unsuitable for certain data mining algorithms that deals only nominal attributes.
- Some classification algorithms such as CLIP and CN2, ID3 are inherently incapable of handling continuous attributes.
- To use such algorithms we need to transform continuous attributes into nominal attributes this process known as 'Discretization'.
- Even though some traditional methods have disadvantages like unbalanced intervals, presence of outliers, also unsupervised, so it ignore the class information.

7/7/2014

### **Proposed Method**

- The proposed discretization algorithm is a combination of the concepts Fayyad and Irani discretization algorithms and greedy approach.
- Let sample S= {x<sub>1</sub>, x<sub>2</sub>, ...., x<sub>n</sub>} be the set of real-valued attributes or continuous attributes. Now to discretize the number of continuous attributes in the given dataset, first we need to apply a standardized statistical technique z-score (given below) on dataset. The z-score is defined as follows :

• After applying z-score on dataset, we find the minimum and maximum values from dataset. We assume that the minimum value of z-score is 'a' and maximum value of z-score is 'b' from the given dataset.

• In order to partition the continuous attributes into a finite number of intervals with all possible value of random variables *X*.

$$X = [a, b] = \{x / a \le x_i < b\} \quad \dots \dots \dots (3)$$

• After that partition the interval X = [a, b) into a k-equal width bins as follows:

$$[a,b) = \bigcup_{i=1}^{k-1} B_i = B_0 \bigcup B_1 \bigcup B_2 \dots \bigcup \bigcup B_{k-1} \dots \dots \bigcup B_{k-1} \dots \dots \dots (4)$$

- where  $\delta = \frac{b-a}{k}$  ...... (5) this represents a width of the each interval in X = [a, b].
- Therefore, the bins are given below:

 $B_0 = [a, a + \delta),$   $B_1 = [a + \delta, a + 2\delta)...B_{k-1} = [a + (k - 1)\delta, a + k\delta) ....(6)_{2014}$ Moreover, empty bins are not allowed in this process.

# **Algorithm: ZDisc-Discretization**

**Input:** Dataset 'S' consisting of number of rows and column observations, with continuous attributes in the set 'S'.

Output: Discredited dataset, accuracy of the dataset S.

- **Step 1:** Select all the records with continuous values in the data set S, not those attributes in the decision attributes column (i.e.  $\subseteq S$ ).
- **Step 2**: Identify the continuous record R from the set A and apply the normalization technique that is the z-score measure on the dataset S with proposed new discretization method (see in section 3.1).
- **Step 3**: After discretization Split the dataset S into training (Tr) and testing (Ts) sets using a stratified a k- fold cross validation procedure.
- Step 4: In Step-3, for each 'k' computes the following procedure:
  - (i) Build the Classifier (C4.5) using the records obtained from Tr.

(ii) Compute the predicted probabilities (scores) from the C4.5 built in Step (4)-(i) using the test data set Ts.

(iii) Identify and collect the original features from test data set Ts.

**Step 5**: Repeat the Steps (4)-(i) to Step (4)-(iii) for each fold.

- Step 6: Compute the classifier accuracy of the dataset S.
- Step 7: RETURN Step (6)

#### Step 8: STOP

### **EXPERIMENTS AND RESULTS**

| Name                         | #Attributes<br>(R/I/N) | #Examples | #Classes | # Continuous<br>Attributes |
|------------------------------|------------------------|-----------|----------|----------------------------|
| Appendicitis<br>(APD)        | 7(7/0/0)               | 106       | 2        | 07                         |
| Cleveland<br>(CLE)           | 13(13/0/0)             | 303       | 5        | 13                         |
| Hepatitis<br>(HEP)           | 15 (3/3/9)             | 214       | 2        | 10                         |
| Pima<br>(PEM)                | 8(8/0/0)               | 768       | 2        | 08                         |
| Breast<br>CancerWis<br>(BCW) | 30(30/0/0)             | 569       | 2        | 30                         |

DATASETS USED IN OUR EXPERIMENTS

| Dataset      |                              | SVM classifier                           |                                          |
|--------------|------------------------------|------------------------------------------|------------------------------------------|
|              | Discretization<br>Algorithms | 10x cross-fold<br>Validation (%Accuracy) | 10x cross-fold<br>Validation(% Accuracy) |
|              | ZDISC                        | 84.90                                    | 87.73                                    |
|              | Ameva                        | 83.18                                    | 86.09                                    |
|              | Bayesian                     | 86.00                                    | 89.63                                    |
|              | CACC                         | 83.18                                    | 85.18                                    |
|              | CADD                         | 80.18                                    | 80.18                                    |
| Appendicitis | CAIM                         | 84.09                                    | 84.18                                    |
|              | Chi2                         | 85.08                                    | 84.00                                    |
|              | Chi-merge                    | 84.09                                    | 85.90                                    |
|              | ExtChi2                      | 80.18                                    | 80.18                                    |
|              | Fayyad & Irani               | 83.18                                    | 85.09                                    |
|              | PKID                         | 80.18                                    | 80.18                                    |

| Table.2. | Test | classifiers | of our | algorithm | with other | discretization | methods o | on Appendicitis         |
|----------|------|-------------|--------|-----------|------------|----------------|-----------|-------------------------|
|          |      |             | ·      |           |            |                |           | <b>FF</b> · · · · · · · |

| Table.3. Test classifiers of our algorithm with oth | ner discretization methods on Cleveland |
|-----------------------------------------------------|-----------------------------------------|
|-----------------------------------------------------|-----------------------------------------|

| Dataset   |                              | SVM classifier                          |                                         |
|-----------|------------------------------|-----------------------------------------|-----------------------------------------|
|           | Discretization<br>Algorithms | 10x cross-fold<br>Validation(%Accuracy) | 10x cross-fold<br>Validation(%Accuracy) |
|           | ZDISC                        | 57.09                                   | 57.90                                   |
|           | Ameva                        | 51.75                                   | 56.72                                   |
|           | Bayesian                     | 52.50                                   | 56.08                                   |
|           | CACC                         | 50.80                                   | 56.70                                   |
|           | CADD                         | 55.11                                   | 55.10                                   |
| Cleveland | CAIM                         | 53.10                                   | 59.05                                   |
|           | Chi2                         | 54.10                                   | 58.74                                   |
|           | Chi-merge                    | 54.44                                   | 59.07                                   |
|           | ExtChi2                      | 54.75                                   | 56.05                                   |
|           | Fayyad & Irani               | 57.97                                   | 57.74                                   |
|           | PKID                         | 56.23                                   | 53.86                                   |

### Table.4. Test classifiers of our algorithm with other discretization methods on Hepatitis

|           |                              | C4.5 classifier                          | SVM classifier                           |
|-----------|------------------------------|------------------------------------------|------------------------------------------|
| Dataset   | Discretization<br>Algorithms | 10x cross-fold<br>Validation(% Accuracy) | 10x cross-fold<br>Validation(% Accuracy) |
|           | ZDISC                        | 89.95                                    | 90.03                                    |
|           | Ameva                        | 83.41                                    | 82.22                                    |
|           | Bayesian                     | 85.23                                    | 82.41                                    |
| Hepatitis | CACC                         | 85.09                                    | 84.57                                    |
|           | CADD                         | 83.42                                    | 83.42                                    |
|           | CAIM                         | 83.59                                    | 80.91                                    |
|           | Chi2                         | 88.10                                    | 90.68                                    |
|           | Chi-merge                    | 85.32                                    | 87.51                                    |
|           | ExtChi2                      | 80.74                                    | 82.41                                    |
|           | Fayyad & Irani               | 88.25                                    | 87.25                                    |
|           | PKID                         | 80.74                                    | 81.69 ITQM 2                             |

|         |                              | SVM classifier                          |                                         |
|---------|------------------------------|-----------------------------------------|-----------------------------------------|
| Dataset | Discretization<br>Algorithms | 10x cross-fold<br>Validation(%Accuracy) | 10x cross-fold<br>Validation(%Accuracy) |
|         | ZDISC                        | 76.17                                   | 76.56                                   |
|         | Ameva                        | Ameva 72.26                             |                                         |
|         | Bayesian                     | 68.01                                   | 75.66                                   |
|         | CACC                         | 72.39                                   | 73.31                                   |
|         | CADD                         | 65.10                                   | 65.10                                   |
| Pima    | CAIM                         | 71.86                                   | 73.71                                   |
|         | Chi2                         | 75.77                                   | 77.09                                   |
|         | Chi-merge                    | 73.68                                   | 72.91                                   |
|         | ExtChi2                      | 73.83                                   | 72.15                                   |
|         | Fayyad & Irani               | 79.80                                   | 75.66                                   |
|         | PKID                         | 74.34                                   | 65.10                                   |

### Table.5. Test classifiers of our algorithm with other discretization methods on Pima

| Dataset                   |                              | SVM classifier                          |                                         |
|---------------------------|------------------------------|-----------------------------------------|-----------------------------------------|
|                           | Discretization<br>Algorithms | 10x cross-fold<br>Validation(%Accuracy) | 10x cross-fold<br>Validation(%Accuracy) |
|                           | ZDISC                        | 94.72                                   | 97.41                                   |
|                           | Ameva 94.20                  |                                         | 95.43                                   |
|                           | Bayesian                     | 90.15                                   | 95.26                                   |
| Breast Cancer<br>Wiscosin | CACC                         | 94.38                                   | 96.47                                   |
|                           | CADD                         | 62.74                                   | 62.74                                   |
|                           | CAIM                         | 94.03                                   | 95.78                                   |
|                           | Chi2                         | 93.85                                   | 93.32                                   |
|                           | Chimerge                     | 94.90                                   | 95.95                                   |
|                           | ExtChi2                      | 81.91                                   | 85.41                                   |
|                           | Fayyad & Irani               | 94.38                                   | 97.01                                   |
|                           | PKID                         | 94.02                                   | 62.74                                   |

#### Table.6. Test classifiers of our algorithm with other discretization methods on BCW

7/7/2014

ZDisc Vs Other Algorithms on Appendicitis dataset









7/7/2014



# CONCLUSIONS

- In this paper, we proposed a new discretization measure based algorithm, which aims to improve in terms of classification accuracy.
- We compared with the state-of-the art methodologies of discretization algorithms on benchmark biomedical datasets.
- The results show that a significant improvement in terms of accuracy can be achieved by applying our algorithm.
- In the future work, we will propose the fuzzy discretization index measure imputation algorithm for missing continuous values in real-world datasets.

### Acknowledgement

The author would like to thank the Associates of ITQM 2014 members for their valuable support.

# References

- An. A, Cercone.N, "Discretization of Continuous Attributes for Learning Classification Rules", 3<sup>rd</sup> Pacific-Asia Conference, Methodologies for Knowledge Discovery and Data Mining, 1999, pp.509-514.
- Ying Yang, Geoffrey I. Webb, and Xindong Wu, "Discretization Methods", Data Mining and Knowledge Discovery Handbook, Second Edition, O. Maimon, L. Rokach, Eds, 2010, pp. 101-116.
- M.Gethsiyal Augasta, T.Kathirvalakumar, "A New Discretization Algorithm based on Range Coefficient of Dispersion and Skewness for Neural Networks Classifier", Applied Soft Computing, vol. 12, 2012, pp.619-625.
- Dougherty J, Kohavi R, Sahami M, "Supervised and unsupervised discretization of continuous features". In Proceedings of the 12<sup>th</sup> International Conference on Machine Learning, 1995, pp.194-202.
- Kerber R , Chimerge: "Discretization for numeric attributes, In National Conference on Artificial Intelligence", AAAI Press, 1992, pp. 123-128.
- Kohavi R, Sahami M, "Error-based and entropy-based discretization of continuous features", In Proceedings of the 2<sup>nd</sup> International Conference on Knowledge Discovery and Data Mining, 1996, pp.114-119.
- Cios, K.J and Kurgan L.A., "CLIP : Hybrid Inductive Machine Learning Algorithms that Generates Inequality Rules", Information Scienter, 9014163, 2004, pp.37-83.

- Clark.P, Niblett.T, "The CN2 Algorithm", Machine Learning, vol.3, 1989, pp.261-283.
- Kurgan L.A., Cios, K.J, "CAIM Discretization Algorithm", IEEE Transaction on Knowledge and Data Engineering, vol.16, 2004, pp. 145-152.
- Tsai, C.J Lee. C.I, Yang. W.P., "A Discretization Algorithm based on Class-Attribute Contingency Coefficient", Information Sciences, vol.178, 2008, pp.714-731.
- Butterworth.R, Simovici.D.A., et al., "A Greedy Algorithm for Supervised Discretization", Biomedical Informatics, vol.37, 2004, pp.285-292.
- Fayyad.U.M, Irani. K.B., "Multi-Interval Discretization of Continuous- Valued Attributes for Classification Learning", Proceddings of 13<sup>th</sup> International Conference on Artificial Inatelligence, 1993, pp.1022-1027.
- Amitava Roy, Sankar K.Pal., "Fuzzy Discretization of Feature Space for a Rough Set Classifier", Pattern Recognition Letters, vol.24, 2003, pp.895-902.

- Soman.P, Diwakar.S, Ajay.V, "Insight into Data Mining", Prentice Hall of India, 2006.
- Holte, R.C., "Very Simple Classification Rules Reform Well on Most Commonly Used Datasets", Machine Learning, vol.11, no.1, 1993, pp.63-90.
- Liu.H, Setiono.R., "Feature Selection via Discretization", IEEE Transactions on Knowledge and Data Engineering, vol.9, 1992, pp. 642-645.
- Tay. F, Shen.L., "A Modified Chi2 Algorithm for Discretization", IEEE Transactions on Knowledge and Data Engineering, vol.14, 2002, pp. 666-670.
- Su, C.T., Hsu, J.H., "An Extended Chi2 Algorithm for Discretization of Real Value Attributes", IEEE Transactions on Knowledge and Data Engineering, vol.17, 2005, pp. 437-441.
- Wong, A.K.C and Chiu, D.K.Y., "Synthesizing Statistical Knowledge from Incomplete Mixed-Mode Data", IEEE Transactions Pattern Analysis and Machine Intelligence, vol.PAMI9, no.6, 1987, pp.786-805.

- Khurram Shehzad, "EDISC: A Class-Tailored Discretization Technique for Rule-Based Classification", IEEE Transactions on Knowledge and Data Engineering, vol.24, No.8, August 2012, pp. 1435-1447.
- Chang-Hwan Lee., "A Hellinger-based discretization method for numeric attributes in classification learning", Knowledge based Systems, vol.20, 2007,pp.419-425.
- Francisco J. Ruiz, Cecilio Angulo, and Nu´ria Agell, "IDD: A Supervised Interval Distance-Based Method for Discretization", IEEE Transactions Knowledge and Data Engineering, vol.20, No.9, Sept 2008, pp. 1230-1238.
- Jing, R., Breitbart, Y., "Data Discretization Unification", IEEE International Conference on Data Mining, 2007, pp.183-
- Berzal, F., et al., "Building Multi-way decision Trees with Numerical Attributes", Information Sciences vol.165, 2004, pp.73–90.
- L. Gonzalez-Abril, F.J. Cuberos, F. Velasco, J.A. Ortega. Ameva: An autonomous discretization algorithm. Expert Systems with
- Applications, vol. 36,2009,pp 5327-5332.
- X. Wu. "A Bayesian Discretizer for Real-Valued Attributes". The. Computer J. vol. 39(8), 1996, pp. 688-691.

- J.Y. Ching, A.K.C. Wong, K.C.C. Chan. "Class-Dependent Discretization for Inductive Learning from Continuous and Mixed-Mode Data". IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17(7),1995, pp. 641-651.
- Ying Yang, Geoffrey I. Webb, "Proportional k-Interval Discretization for Naive-Bayes Classifiers". 12th European Conference on Machine Learning, 2001, pp.564-575.
- K.A. Kaufman, R.S. Michalski, Learning from inconsistent and noisy data: the AQ18 approach, in: Proceeding of Eleventh International Symposium on Methodologies for Intelligent Systems, 1999.
- P. Clark, T. Niblett, The CN2 algorithm, Machine Learning, vol. 3 (4), pp. 261–283, 1989.



### Your Queries Please!!!