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Gale-Shapley college admission problem

Players

Set of applicants A, set of universities B

Each applicant a ∈ A can be admitted to at most one
university

Each university b ∈ B can admit no more than qb students.

Each player has linear order preferences over players on the
other side

Definition

Matching µ is a mapping from A ∪ B to subsets of A ∪ B such
that:

1 a ∈ µ(b) ⇔ b = µ(a)

2 ∀a ∈ A µ(a) = {b} (b ∈ B) or µ(a) = a

3 ∀b ∈ B µ(b) ⊆ A or µ(b) = b

4 ∀b ∈ B |µ(b)| ≤ qb
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Stability of matching

Matching is called stable if the following properties hold (Gale,
Shapley, 1962):

individual rationality of students: no student is matched to an
unacceptable university,

individual rationality of universities: no university admits an
unacceptable student,

”empty seats” stability: no university-student pair exists such
that an applicant prefers this university to her current match
and the university finds applicant acceptable and has empty
seats

pairwise stability: no university-student pair exists such that
an applicant prefers this university to her current match and
the university prefers this student to at least one of currently
admitted students.
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Deferred acceptance procedure

Gale and Shapley provided a constructive proof of existence of a
stable matching.

Deferred acceptance procedure (students proposing)

Step 1. Each student applies to her most preferred university.
Each university temporary admits no more than qb best
students and rejects the others.

...

Step k. Each rejected student applies to her second most
preferred university. Each universiy consideres all currently
applying students (both remaining from the previous steps
and applied at the k-th), temporary admits no more than qb

among them and rejects the others.

When each student is temporary assgined to university or is
rejected by all acceptable universities, procedure stops.
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Properties of DA procedure

DA procedure always produces a stable matching, call it µA,

For students µA is a unique Pareto-optimal stable matching,

Reporting preferences truthfully is a weakly-dominant strategy
for each student.

Unfortunately, when preferences of agents are not linear orders:

DA procedure is not well-defined in case of ties

Even If DA procedure is redefined, efficiency do not necessary
hold
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The Model

Players

Each student a ∈ A can be admitted to one university

Each university b ∈ B can admit no more than qb students.

Preferences

R - the profile of students’ preferences over universities.
∀a ∈ A Ra is a linear order on B ∪ a.

� - the profile of universities’ preferences over students.
∀b ∈ B �b is an interval order on A ∪ b.

∀b �b satisfies ”no indifference with empty set” property, i.e.
∀b ∈ B,∀a ∈ A either a �b ∅ or a ≺b ∅.

preference relation of each university over the sets of
applicants satisfies the responsiveness to the preference
relation over individuals: ∀b ∈ B, ∀a1, a2 ∈ A, A′ ⊂ A if
a1 �b a2 then A′ ∪ a1 �b A′ ∪ a2.
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The interval order preferences: motivating example

Three students apply to a university b

a1’s exam score is 293

a2’s exam score is 291

a3’s exam score is 288

University b has the following preferences:

a1 is indifferent to a2,
a2 is indifferent to a3,

but a1 is preffered to a3.

This
is an example of a natural situation, where negative transitivity
property for preference relation does not hold.
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The interval order preference relation

Interval order

Binary relation � on the set A is an interval order, if there exists
an interval function I : A→ R2, such that for each element in A it
chooses an interval [l , u], such that a1 � a2 if and only if
l(a1) > u(a2).

Semiorder

Semiorder � is an interval order with an interval function such
that (ua − la) = const. In other words, in case of a semiorder, the
length of the ’error’ interval does not depend on the alternative.

Simplest semiorder

Simplest semiorder is a semiorder such that ∀a1, a2 there exists no
more than one a3 such that negative transitivity condition does not
hold.
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Existence of stable matching

Theorem

Stable matching always exists in case, when universities have
interval order preferences over students

Theorem

For each stable matching µ there exists such universities’
preference profile �, which consists of linear order preferences and
doesn’t contradict original profile �, such that matching µ is also
stable under this strict preference profile.
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Applicant Pareto-efficient stable matching

Erdil and Ergin, 2006, propose a procedure which allows to find
student Pareto-optimal stable matching in case of universities’
weak order preferences.
We modify it for the case of the interval order preferences and
prove, that it works in our model.

1 Preferences of universities are arbitrary transformed to linear
orders and Deferred Acceptance procedure with students
proposing is applied. Result is a matching µ, stable but not
necessarily Pareto-efficient.

2 We try to find so-called Stable Improvement Cycle. If SIC
exists, then we can improve µ.

3 Procedure ends, when we arrive to the matching µ′ which
does not have Stable Improvement Cycle.
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Stable Improvement Cycle

C (b, µ) = {a : bRaµ(a)}, D(b, µ) = {a ∈ C : ∀a′ ∈ Ca �b a′}.

Definition

Stable Improvement Cycle consists of distinct applicants
a1, ..., an ≡ a0 (n ≥ 2) such that

µ(ai ) ∈ B (each student in a cycle is assigned to a university),

∀ai µ(ai+1)Raiµ(ai )

∀ai ai ∈ D(µ(ai+1), µ)(ai is one of the best students among
those who prefer µ(ai+1) to her current match)
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Applicant Pareto-efficiency: necessary and sufficient
condition

Theorem

Fix � and R, and let µ be a stable matching. If µ is student-side
Pareto-dominated by another stable matching, the it admits a
Stable Improvement Cycle.
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Applicant Pareto-efficient mechanism

1 Construct linear extensions of interval order preference
relations

2 Apply DA procedure with transformed preference profile

3 Search for a Stable Improvement Cycle. If cycle is found,
improve a matching by exchanging seats among students in
the SIC.

4 Search for a SIC until Pareto-efficient matching is reached.
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Properties of the mechanism

Applicant Pareto-efficient stable matching is always found

Mechanism is not strategy-proof both for students and for
universities

Proposition (Abdulkadiroglu, Pathak, Roth, 2005)

There does not exist an applicant strategy-proof mechanism, which
would produce a matching, that Pareto-dominates the result of DA
procedure with some tie-breaking rule.
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Tie-breaking: example

Now we will check, how ’unfortunate’ tie-breaking leads to an
inefficient stable matching under applicant-proposing DA procedure
P(a1) : b1 � b2 � b3 � (b1) : a3 ≈ a2 ≈ a1, a3 � a1
P(a2) : b2 � b1 � b3 � (b2) : a1 ≈ a3 ≈ a2, a1 � a2
P(a3) : b2 � b3 � b1 � (b3) : a1 ≈ a2 ≈ a3, a1 � a3
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Procedure is finished, a stable matching is constructed!
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Tie-breaking: example

Unfortunately, the matching is not efficient for applicants. There
exists a Stable Improvement Cycle.

Preferences

P(a1) : b1 � b2 � b3 � (b1) : a3 ≈ a2 ≈ a1, a3 � a1
P(a2) : b2 � b1 � b3 � (b2) : a1 ≈ a3 ≈ a2, a1 � a2
P(a3) : b2 � b3 � b1 � (b3) : a1 ≈ a2 ≈ a3, a1 � a3
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Mechanism with lower chances of an inefficient outcome

Fix set of applicants A and set of universities B.

Consider some particular university b.

Suppose that preferences of all other applicants and
universities are chosen randomly from uniform distribution.

Lemma 1

Fix preference relation of university b. Under student-proposing
DA-procedure specific tie-breaking rule does not affect the
probability of receiving proposition from each particular applicant.

Therefore, when we compare different tie-breaking rules, only the
number of possible edges in an improvement graph matters.
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Mechanism with lower chances of an inefficient outcome

’Reversal’ tie-breaking rule

Step 1. Under preference relation �b find a maximal set of
undominated alternatives I1 ∈ A. Let |I1| = k.

Step 1.0 Find an alternative (we’ll call it ak) with the lowest
l(ak). Let ak �′b ai for each ai in I1.

Step 1.i Choose an alternative (ak−i ) with the lowest lak−i

among remaining and let this alternatives all other
alternatives, remaining in the I1.

At the end of step 1 we will get ak �′ ak−1 �′ ... �′ a1.

Step 2. Under preference relation �b find a maximal set of
undominated alternatives I2 ∈ A \ I1.
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Mechanism with lower chances of an inefficient outcome

Definition

Regular semiorder is a semiorder preference relation, where each
maximal set of incomparable alternatives (anti-chain) has the same
cardinality.

Theorem

If university preference relation is a regular semiorder, then chances
of forming an inefficient matching are the lowest with ’reversal’
tie-breaking rule
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Mechanism with lower chances of an inefficient outcome

New stable mechanism

1 Break ties in preferences according to the rule described above

2 Apply student-proposing DA procedure

Mechanism properties

As it uses a tie-breaking rule before DA procedure, it is
strategy-proof for students

Outcome may be an Applicant-inefficient matching, but
probability is lower then for GS with random tie-breaking rule.
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Thank you!
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