On the superposition of the Borda and threshold preference orders for three-graded rankings

V. V. Chistyakov

Department of Applied Mathematics and Computer Science National Research University Higher School of Economics

Nizhny Novgorod, Russian Federation
vchistyakov@hse.ru

ITQM 2014

Introduction

L. Narens. Abstract Measurement Theory. MIT Press, Cambridge, MA, 1985.

Given a finite set of alternatives X and a preference order P on X, we would like to scale X to real numbers by means of a function, preserving order properties. More precisely,
$F: X \rightarrow \mathbb{R}$ is a utility function for P if, given $x, y \in X$,

$$
(x, y) \in P \quad(x \text { is } P \text {-preferred to } y) \quad \text { iff } \quad F(x)>F(y)
$$

A vast literature is devoted to the existence of utility functions with different analytic properties. A comprehensive account on this is contained in
P. C. Fishburn. Utility Theory for Decision Making. John Wiley \& Sons, NY, 1970.

Introduction

L. Narens. Abstract Measurement Theory. MIT Press, Cambridge, MA, 1985.

Given a finite set of alternatives X and a preference order P on X, we would like to scale X to real numbers by means of a function, preserving order properties. More precisely, $F: X \rightarrow \mathbb{R}$ is a utility function for P if, given $x, y \in X$,

$$
(x, y) \in P \quad(x \text { is } P \text {-preferred to } y) \quad \text { iff } \quad F(x)>F(y) .
$$

A vast literature is devoted to the existence of utility functions with different analytic properties. A comprehensive account on this is contained in
P. C. Fishburn. Utility Theory for Decision Making. John Wiley \& Sons, NY, 1970.

Introduction

L. Narens. Abstract Measurement Theory. MIT Press, Cambridge, MA, 1985.

Given a finite set of alternatives X and a preference order P on X, we would like to scale X to real numbers by means of a function, preserving order properties. More precisely, $F: X \rightarrow \mathbb{R}$ is a utility function for P if, given $x, y \in X$, $(x, y) \in P \quad(x$ is P-preferred to $y) \quad$ iff $\quad F(x)>F(y)$.

A vast literature is devoted to the existence of utility functions with different analytic properties. A comprehensive account on this is contained in
P. C. Fishburn. Utility Theory for Decision Making. John Wiley \& Sons, NY, 1970.

Introduction

L. Narens. Abstract Measurement Theory. MIT Press, Cambridge, MA, 1985.

Given a finite set of alternatives X and a preference order P on X, we would like to scale X to real numbers by means of a function, preserving order properties.

A vast literature is devoted to the existence of utility functions with different analytic properties. A comprehensive account on this is contained in
P. C. Fishburn. Utility Theory for Decision Making. John Wiley \& Sons, NY, 1970.

Introduction

L. Narens. Abstract Measurement Theory. MIT Press, Cambridge, MA, 1985.

Given a finite set of alternatives X and a preference order P on X, we would like to scale X to real numbers by means of a function, preserving order properties. More precisely, $F: X \rightarrow \mathbb{R}$ is a utility function for P if, given $x, y \in X$,

$$
(x, y) \in P \quad(x \text { is } P \text {-preferred to } y) \quad \text { iff } \quad F(x)>F(y)
$$

A vast literature is devoted to the existence of utility functions with different analytic properties. A comprehensive account on this is contained in
P. C. Fishburn. Utility Theory for Decision Making. John Wiley \& Sons, NY, 1970.

Introduction

L. Narens. Abstract Measurement Theory. MIT Press, Cambridge, MA, 1985.

Given a finite set of alternatives X and a preference order P on X, we would like to scale X to real numbers by means of a function, preserving order properties. More precisely, $F: X \rightarrow \mathbb{R}$ is a utility function for P if, given $x, y \in X$,

$$
(x, y) \in P \quad(x \text { is } P \text {-preferred to } y) \quad \text { iff } \quad F(x)>F(y)
$$

A vast literature is devoted to the existence of utility functions with different analytic properties.
this is contained in
P. C. Fishburn. Utility Theory for Decision Making. John Wiley
\& Sons, NY, 1970.

Introduction

L. Narens. Abstract Measurement Theory. MIT Press, Cambridge, MA, 1985.

Given a finite set of alternatives X and a preference order P on X, we would like to scale X to real numbers by means of a function, preserving order properties. More precisely, $F: X \rightarrow \mathbb{R}$ is a utility function for P if, given $x, y \in X$,

$$
(x, y) \in P \quad(x \text { is } P \text {-preferred to } y) \quad \text { iff } \quad F(x)>F(y)
$$

A vast literature is devoted to the existence of utility functions with different analytic properties. A comprehensive account on this is contained in
P. C. Fishburn. Utility Theory for Decision Making. John Wiley \& Sons, NY, 1970.

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good } .
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ means that $x=\left(x_{1}, \ldots, x_{n}\right)$
with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), called the superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility function for 3).

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good }
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ mean
with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), called the
supernosition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility function for 3),

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good } .
$$

Thus, $X=\{1,2,3\}^{n}$,
with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), called the
superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility function for 3),

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good } .
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ means that $x=\left(x_{1}, \ldots, x_{n}\right)$ with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), called the superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility function for 3),

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good } .
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ means that $x=\left(x_{1}, \ldots, x_{n}\right)$ with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), call
superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility function for 3).

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good } .
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ means that $x=\left(x_{1}, \ldots, x_{n}\right)$ with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), called the
superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility function for 3).

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good }
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ means that $x=\left(x_{1}, \ldots, x_{n}\right)$ with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), called the
superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility function for 3).

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good } .
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ means that $x=\left(x_{1}, \ldots, x_{n}\right)$ with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), called the superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility functionfor 3).

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good } .
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ means that $x=\left(x_{1}, \ldots, x_{n}\right)$ with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), called the superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility function for 3)

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good } .
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ means that $x=\left(x_{1}, \ldots, x_{n}\right)$ with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and

3) an intermediate preference order between 1) and 2), called the superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);

Introduction

In this talk we consider the technically simple case when alternatives $x \in X$ are ranked on the scale of three grades:

$$
1=\text { bad }, \quad 2=\text { average }, \quad \text { and } \quad 3=\text { good }
$$

Thus, $X=\{1,2,3\}^{n}$, and $x \in X$ means that $x=\left(x_{1}, \ldots, x_{n}\right)$ with coordinates $x_{i} \in\{1,2,3\}(n \geq 3)$.
Three preference orders will be considered on X :

1) the Borda preference order,
2) the threshold preference order, and
3) an intermediate preference order between 1) and 2), called the superposition of orders 1) and 2).
In what follows we present

- the axiomatics of utility functions for preference order 3);
- the explicit formula for the enumerating utility function for 3).

Outline

(1) Preference orders

- Borda and threshold preference orders
- Superposition of preference orders
(2) Results
- Axiomatics of utility functions for $B * V$
- The enumerating utility function

Outline

(1) Preference orders

- Borda and threshold preference orders
- Superposition of preference orders
(2) Results
- Axiomatics of utility functions for $B * V$
- The enumerating utility function

We begin by recalling a few well-known definitions.

$P \subset X X X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.)
Notation: $x \succ_{p} y$ denotes $(x, y) \in P(x$ is P-preferred to $y)$.
The indifference relation I_{P} on X is defined as the set of all
pairs $(x, y) \in X \times X$ such that $x \nsucc_{p} y$ and $y \not_{p} x$.
$x \approx_{p} y$ denotes $(x, y) \in I_{P}$ (x and y are P-indifferent).
Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set
$P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a
preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.
The preference order $P(F)$ is called F-representable;

We begin by recalling a few well-known definitions.

$P \subset X \times X$ is said to be a preference order on a set X if it is

- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.) Notation: $x \succ_{P} y$ denotes $(x, y) \in P(x$ is P-preferred to $y)$.

The indifference relation I_{P} on X is defined as the set of all
pairs $(x, y) \in X \times X$ such that $x \nsucc_{p} y$ and $y \nsucc_{p} x$.
$x \approx_{p} y$ denotes $(x, y) \in I_{P}(x$ and y are P-indifferent).
Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set
$P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a
preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.
The preference order $P(F)$ is called F-representable . . .

We begin by recalling a few well-known definitions.

$P \subset X \times X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.)
Notation: $x \succ_{P} y$ denotes $(x, y) \in P$ (x is P-preferred to $\left.y\right)$.
The indifference relation I_{P} on X is defined as the set of all
pairs $(x, y) \in X \times X$ such that $x \not_{p} y$ and $y \not_{p} x$.
$x \approx_{p} y$ denotes $(x, y) \in I_{P}(x$ and y are P-indifferent).
Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set
$P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a
preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.
The preference order $P(F)$ is called F-representable

We begin by recalling a few well-known definitions.
$P \subset X \times X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply
(Preference orders are also called weak orders.)
Notation: $x \succ_{P} y$ denotes $(x, y) \in P(x$ is P-preferred to $y)$.
The indifference relation I_{P} on X is defined as the set of all
pairs $(x, y) \in X \times X$ such that $x \nsucc_{p} y$ and $y \not_{p} x$.
$x \approx_{P} y$ denotes $(x, y) \in I_{P}(x$ and y are P-indifferent).
Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set
$P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a
preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.
The preference order $P(F)$ is called F-representable,\ldots

We begin by recalling a few well-known definitions.
$P \subset X \times X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.)
Notation: $x \succ_{P} y$ denotes $(x, y) \in P$ (x is P-preferred to y).
The indifference relation I_{P} on X is defined as the set of all
pairs $(x, y) \in X \times X$ such that $x \not_{\not} y$ and $y \not_{p} x$.
$x \approx_{p} y$ denotes $(x, y) \in I_{P} \quad(x$ and y are P-indifferent $)$.
Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set
$P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a
preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.
The preference order $P(F)$ is called F-represeqtable; :

We begin by recalling a few well-known definitions.
$P \subset X \times X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.)
Notation: $x \succ_{P} y$ denotes $(x, y) \in P$ (x is P-preferred to $\left.y\right)$.
The indifference relation I_{P} on X is defined as the set of all
pairs $(x, y) \in X \times X$ such that $x \not_{p} y$ and $y \not_{p} x$.
$x \approx_{p} y$ denotes $(x, y) \in I_{P}(x$ and y are P-indifferent $)$
Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set
$P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a
preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.
The preference order $P(F)$ is called F-represeqtable; :

We begin by recalling a few well-known definitions.
$P \subset X \times X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.)
Notation: $x \succ_{P} y$ denotes $(x, y) \in P \quad(x$ is P-preferred to $y)$.

Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set

preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.
The preference order $P(F)$ is called F-represeqtable; . $\overline{\underline{\underline{D}}}$, $\overline{\underline{\underline{\underline{D}}}}$

We begin by recalling a few well-known definitions.
$P \subset X \times X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.)
Notation: $x \succ_{P} y$ denotes $(x, y) \in P \quad(x$ is P-preferred to $y)$.
The indifference relation I_{P} on X is defined as the set of all pairs $(x, y) \in X \times X$ such that $x \nsucc p_{p} y$ and $y \not_{p} x$.

Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set
$P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a
preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.
The preference order $P(F)$ is called F-represegtable; . $\overline{\underline{\underline{E}}}$,

We begin by recalling a few well-known definitions.
$P \subset X \times X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.)
Notation: $x \succ_{P} y$ denotes $(x, y) \in P \quad(x$ is P-preferred to $y)$.
The indifference relation I_{P} on X is defined as the set of all pairs $(x, y) \in X \times X$ such that $x \nsucc p_{p} y$ and $y \nsucc ~_{p} x$.
$x \approx_{P} y$ denotes $(x, y) \in I_{P}(x$ and y are P-indifferent).
Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set
$P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a
preference order on X. We have: $x \approx_{D(E)} y$ iff $F(x)=F(y)$.
The preference order $P(F)$ is called F-represegtables

We begin by recalling a few well-known definitions.
$P \subset X \times X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.)
Notation: $x \succ_{P} y$ denotes $(x, y) \in P$ (x is P-preferred to y).
The indifference relation I_{P} on X is defined as the set of all pairs $(x, y) \in X \times X$ such that $x \nsucc p_{p} y$ and $y \nsucc p_{p} x$. $x \approx_{P} y$ denotes $(x, y) \in I_{P}$ (x and y are P-indifferent).
Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set $P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.

We begin by recalling a few well-known definitions.
$P \subset X \times X$ is said to be a preference order on a set X if it is

- irreflexive: $(x, x) \notin P$ for all $x \in X$;
- transitive: $(x, y) \in P$ and $(y, z) \in P$ imply $(x, z) \in P$;
- negatively transitive: $(x, y) \notin P$ and $(y, z) \notin P$ imply $(x, z) \notin P$.
(Preference orders are also called weak orders.)
Notation: $x \succ_{P} y$ denotes $(x, y) \in P$ (x is P-preferred to y).
The indifference relation I_{P} on X is defined as the set of all pairs $(x, y) \in X \times X$ such that $x \nsucc p_{p} y$ and $y \nsucc ~_{P} x$. $x \approx_{P} y$ denotes $(x, y) \in I_{P}$ (x and y are P-indifferent).
Example. If $F: X \rightarrow \mathbb{R}$ is a nonconstant function, then the set $P(F)$ of all pairs $(x, y) \in X \times X$ such that $F(x)>F(y)$ is a preference order on X. We have: $x \approx_{P(F)} y$ iff $F(x)=F(y)$.

The preference order $P(F)$ is called F-representable.

Borda preference order

Set $S(x)=x_{1}+\cdots+x_{n}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$.
Given $x, y \in X, x \succ_{B} y$ (x is Borda preferred to y) if $S(x)>S(y)$.
B is a preference order on X with 'coarse' ranking of X.
Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$ and $N=S(x)-4$ (ordering in ascending B-preference):
$(1,1,1,1,1)_{1}$,
$(1,1,1,1,2)_{2}$,
$(1,1,1,1,3)_{3}$,
$(1,1,1,2,2)_{3}$,
$(1,1,1,2,3) 4$,
$(1,1,2,2,2) 4$
$(1,1,1,3,3)_{5}$.
$(1,1,2,2,3)_{5}$
$(1,2,2,2,2)_{5}$,
$(1,1,2,3,3)_{6}$
$(1,2,2,2,3)_{6}$,
$(2,2,2,2,2)_{6}$,
$S(x)=9$
$(1,1,3,3,3)_{7}$
$(1,2,2,3,3)_{7}$,
$(2,2,2,2,3)_{7}$,
$S(x)=10$
$(1,2,3,3,3)_{8}$
$(2,2,2,3,3) 8$
$(1,3,3,3,3) 9$,
$(2,2,3,3,3) 9$,

Borda preference order

Set $S(x)=x_{1}+\cdots+x_{n}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$. Given $x, y \in X, x \succ_{B} y$ (x is Borda preferred to y) if $S(x)>S(y)$. B is a preference order on X with 'coarse' ranking of X. Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$ and $N=S(x)-4$ (ordering in ascending B-preference):

Results
Summary
References

Borda preference order

Set $S(x)=x_{1}+\cdots+x_{n}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$. Given $x, y \in X, x \succ_{B} y(x$ is Borda preferred to $y)$ if $S(x)>S(y)$. B is a preference order on X with 'coarse' ranking of X. Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$ and $N=S(x)-4$ (ordering in ascending B-preference):

Borda preference order

Set $S(x)=x_{1}+\cdots+x_{n}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$. Given $x, y \in X, x \succ_{B} y$ (x is Borda preferred to y) if $S(x)>S(y)$. B is a preference order on X with 'coarse' ranking of X.
Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right) N$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$ and $N=S(x)-4$ (ordering in ascending B-preference):

Borda preference order

Set $S(x)=x_{1}+\cdots+x_{n}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$. Given $x, y \in X, x \succ_{B} y(x$ is Borda preferred to $y)$ if $S(x)>S(y)$. B is a preference order on X with 'coarse' ranking of X. Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$ and $N=S(x)-4$ (ordering in ascending B-preference):

Borda preference order

Set $S(x)=x_{1}+\cdots+x_{n}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$. Given $x, y \in X, x \succ_{B} y(x$ is Borda preferred to $y)$ if $S(x)>S(y)$. B is a preference order on X with 'coarse' ranking of X. Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$ and $N=S(x)-4$ (ordering in ascending B-preference):
$(1,1,1,1,1)_{1}, \quad(1,1,1,1,2)_{2}, \quad(1,1,1,1,3)_{3}, \quad(1,1,1,2,2)_{3}$,

Borda preference order

Set $S(x)=x_{1}+\cdots+x_{n}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$. Given $x, y \in X, x \succ_{B} y(x$ is Borda preferred to $y)$ if $S(x)>S(y)$. B is a preference order on X with 'coarse' ranking of X. Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$ and $N=S(x)-4$ (ordering in ascending B-preference):
$(1,1,1,1,1)_{1}$,
$(1,1,1,1,2)_{2}$,
$(1,1,1,1,3)_{3}$,
$(1,1,1,2,2)_{3}$,
$(1,1,1,2,3)_{4}$,
$(1,1,2,2,2)_{4}$, $S(x)=8$

Borda preference order

Set $S(x)=x_{1}+\cdots+x_{n}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$. Given $x, y \in X, x \succ_{B} y(x$ is Borda preferred to y) if $S(x)>S(y)$. B is a preference order on X with 'coarse' ranking of X. Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$ and $N=S(x)-4$ (ordering in ascending B-preference):

$(1,1,1,1,1)_{1}$,	$(1,1,1,1,2)_{2}$,	$(1,1,1,1,3)_{3}$,
$(1,1,1,2,3)_{4}$,	$(1,1,2,2,2)_{4}$,	
$(1,1,1,3,3)_{5}$,	$(1,1,2,2,3)_{5}$,	$(1,2,2,2,2)_{5}$,

Results Summary References

Borda preference order

Set $S(x)=x_{1}+\cdots+x_{n}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$. Given $x, y \in X, x \succ_{B} y(x$ is Borda preferred to $y)$ if $S(x)>S(y)$.
B is a preference order on X with 'coarse' ranking of X.
Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$ and $N=S(x)-4$ (ordering in ascending B-preference):

Threshold preference order

F.T.Aleskerov, V.I.Yakuba. A method for threshold aggregation of three-grade rankings. Doklady Math. 75 (2007) 322-324.
Notation: For $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$ we denote by

$$
v_{k}(x)=\operatorname{card}\left\{i: 1 \leq i \leq n \text { and } x_{i}=k\right\} \quad(k=1,2,3)
$$

the multiplicity of grade k in the vector-alternative x. E.g., for $x=(1,1,1,1,3)$, we have: $v_{1}(x)=4, v_{2}(x)=0$ and $v_{3}(x)=1$.

$$
v_{1}(x)+v_{2}(x)+v_{3}(x)=n \text { and } S(x)=v_{1}(x)+2 v_{2}(x)+3 v_{3}(x)
$$

Definition (Aleskerov, Yakuba): Given $x, y \in X$, we say that $x \succ_{V} y$ (x is threshold preferred to y) if

$$
\text { either } v_{1}(x)<v_{1}(y) \text {, or } v_{1}(x)=v_{1}(y) \text { and } v_{2}(x)<v_{2}(y)
$$

Threshold preference order

F.T.Aleskerov, V.I.Yakuba. A method for threshold aggregation of three-grade rankings. Doklady Math. 75 (2007) 322-324.

Notation: For $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$ we denote by $v_{k}(x)=\operatorname{card}\left\{i: 1 \leq i \leq n\right.$ and $\left.x_{i}=k\right\} \quad(k=1,2,3)$
the multiplicity of grade k in the vector-alternative x. E. g., for $x=(1,1,1,1,3)$, we have: $v_{1}(x)=4, v_{2}(x)=0$ and $v_{3}(x)=1$
\square
Definition (Aleskerov, Yakuba): Given $x, y \in X$, we say that $x \succ_{V} y$ (x is threshold preferred to y) if
either $v_{1}(x)<v_{1}(y)$, or $v_{1}(x)=v_{1}(y)$ and $v_{2}(x)<v_{2}(y)$.

Threshold preference order

F.T.Aleskerov, V.I.Yakuba. A method for threshold aggregation of three-grade rankings. Doklady Math. 75 (2007) 322-324. Notation: For $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$ we denote by $v_{k}(x)=\operatorname{card}\left\{i: 1 \leq i \leq n\right.$ and $\left.x_{i}=k\right\} \quad(k=1,2,3)$ the multiplicity of grade k in the vector-alternative x. E.g., for $x=(1,1,1,1,3)$, we have: $v_{1}(x)=4, v_{2}(x)=0$ and $v_{3}(x)=1$
\square
Definition (Aleskerov, Yakuba): Given $x, y \in X$, we say that $x \succ_{v} y$ (x is threshold preferred to y) if
either $v_{1}(x)<v_{1}(y)$, or $v_{1}(x)=v_{1}(y)$ and $v_{2}(x)<v_{2}(y)$.

Threshold preference order

F.T.Aleskerov, V.I.Yakuba. A method for threshold aggregation of three-grade rankings. Doklady Math. 75 (2007) 322-324. Notation: For $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$ we denote by

$$
v_{k}(x)=\operatorname{card}\left\{i: 1 \leq i \leq n \text { and } x_{i}=k\right\} \quad(k=1,2,3)
$$

the multiplicity of grade k in the vector-alternative x.
\square
Definition (Aleskerov, Vakuba): Given $x, y \in X$, we say that $x \succ_{V} y$ (x is threshold preferred to y) if
either $v_{1}(x)<v_{1}(y)$, or $v_{1}(x)=v_{1}(y)$ and $v_{2}(x)<v_{2}(y)$.

Threshold preference order

F.T.Aleskerov, V.I.Yakuba. A method for threshold aggregation of three-grade rankings. Doklady Math. 75 (2007) 322-324. Notation: For $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$ we denote by

$$
v_{k}(x)=\operatorname{card}\left\{i: 1 \leq i \leq n \text { and } x_{i}=k\right\} \quad(k=1,2,3)
$$

the multiplicity of grade k in the vector-alternative x. E.g., for $x=(1,1,1,1,3)$, we have: $v_{1}(x)=4, v_{2}(x)=0$ and $v_{3}(x)=1$.
\square
Definition (Aleskerov, Yakuba): Given $x, y \in X$, we say that $x \succ_{v} y$ (x is threshold preferred to y) if
either $v_{1}(x)<v_{1}(y)$, or $v_{1}(x)=v_{1}(y)$ and $v_{2}(x)<v_{2}(y)$.

Threshold preference order

F.T.Aleskerov, V.I.Yakuba. A method for threshold aggregation of three-grade rankings. Doklady Math. 75 (2007) 322-324. Notation: For $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$ we denote by

$$
v_{k}(x)=\operatorname{card}\left\{i: 1 \leq i \leq n \text { and } x_{i}=k\right\} \quad(k=1,2,3)
$$

the multiplicity of grade k in the vector-alternative x. E.g., for $x=(1,1,1,1,3)$, we have: $v_{1}(x)=4, v_{2}(x)=0$ and $v_{3}(x)=1$.

$$
v_{1}(x)+v_{2}(x)+v_{3}(x)=n \text { and } S(x)=v_{1}(x)+2 v_{2}(x)+3 v_{3}(x)
$$

Definition (Aleskerov, Yakuba): Given $x, y \in X$, we say that $x \succ_{V} y$ (x is threshold preferred to y) if
either $v_{1}(x)<v_{1}(y)$, or $v_{1}(x)=v_{1}(y)$ and $v_{2}(x)<v_{2}(y)$.

Threshold preference order

F.T.Aleskerov, V.I.Yakuba. A method for threshold aggregation of three-grade rankings. Doklady Math. 75 (2007) 322-324. Notation: For $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$ we denote by

$$
v_{k}(x)=\operatorname{card}\left\{i: 1 \leq i \leq n \text { and } x_{i}=k\right\} \quad(k=1,2,3)
$$

the multiplicity of grade k in the vector-alternative x. E.g., for $x=(1,1,1,1,3)$, we have: $v_{1}(x)=4, v_{2}(x)=0$ and $v_{3}(x)=1$.

$$
v_{1}(x)+v_{2}(x)+v_{3}(x)=n \text { and } S(x)=v_{1}(x)+2 v_{2}(x)+3 v_{3}(x) .
$$

Definition (Aleskerov, Yakuba): Given $x, y \in X$, we say that $x \succ_{V} y$ (x is threshold preferred to y) if
either $v_{1}(x)<v_{1}(y)$, or $v_{1}(x)=v_{1}(y)$ and $v_{2}(x)<v_{2}(y)$.

Threshold preference order

F.T.Aleskerov, V.I.Yakuba. A method for threshold aggregation of three-grade rankings. Doklady Math. 75 (2007) 322-324. Notation: For $x=\left(x_{1}, \ldots, x_{n}\right) \in X=\{1,2,3\}^{n}$ we denote by

$$
v_{k}(x)=\operatorname{card}\left\{i: 1 \leq i \leq n \text { and } x_{i}=k\right\} \quad(k=1,2,3)
$$

the multiplicity of grade k in the vector-alternative x. E.g., for $x=(1,1,1,1,3)$, we have: $v_{1}(x)=4, v_{2}(x)=0$ and $v_{3}(x)=1$.

$$
v_{1}(x)+v_{2}(x)+v_{3}(x)=n \text { and } S(x)=v_{1}(x)+2 v_{2}(x)+3 v_{3}(x)
$$

Definition (Aleskerov, Yakuba): Given $x, y \in X$, we say that $x \succ_{V} y$ (x is threshold preferred to y) if either $v_{1}(x)<v_{1}(y)$, or $v_{1}(x)=v_{1}(y)$ and $v_{2}(x)<v_{2}(y)$.

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa.
N.B. V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have the ordering in ascending V-preference:

previous line is continued here $\quad(1,3,3,3,3)_{15}$
$(2,2,2,2,2)_{16},(2,2,2,2,3)_{17},(2,2,2,3,3)_{18},(2,2,3,3,3)_{19}$,

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa.
N.B.: V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have the ordering in ascending V-preference:

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa. N.B.: V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$.

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative
of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have
the ordering in ascending V-preference:

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa. N.B.: V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$.

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have the ordering in ascending V-preference:

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa. N.B.: V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$.

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have the ordering in ascending V-preference:

$$
(1,1,1,1,1)_{1}, \quad(1,1,1,1,2)_{2}, \quad(1,1,1,1,3)_{3},
$$

previous line is continued here $\quad(1,3,3,3,3)_{15}$

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa. N.B.: V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$.

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have the ordering in ascending V-preference:

previous line is continued here $(1,3,3,3,3)_{15}$

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa. N.B.: V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$.

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have the ordering in ascending V-preference:

$(1,1,1,1,1)_{1}$,	$(1,1,1,1,2)_{2}$,	$(1,1,1,1,3)_{3}$,
$(1,1,1,2,2)_{4}$,	$(1,1,1,2,3)_{5}$,	$(1,1,1,3,3)_{6}$,

previous line is continued here $\quad(1,3,3,3,3)_{15}$

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa. N.B.: V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$.

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have the ordering in ascending V-preference:

$(1,1,1,1,1)_{1}$,	$(1,1,1,1,2)_{2}$,	$(1,1,1,1,3)_{3}$,
$(1,1,1,2,2)_{4}$,	$(1,1,1,2,3)_{5}$,	$(1,1,1,3,3)_{6}$,
$(1,1,2,2,2)_{7}$,	$(1,1,2,2,3)_{8}$,	$(1,1,2,3,3)_{9}$,
$(1,2,2,2,2)_{11}$,	$(1,2,2,2,3)_{12}$,	$(1,2,2,3,3)_{13}$,

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa. N.B.: V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$.

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have the ordering in ascending V-preference:
$(1,1,1,1,1)_{1}, \quad(1,1,1,1,2)_{2}, \quad(1,1,1,1,3)_{3}$,
$(1,1,1,2,2)_{4}, \quad(1,1,1,2,3)_{5}, \quad(1,1,1,3,3)_{6}$,
$(1,1,2,2,2)_{7}, \quad(1,1,2,2,3)_{8}, \quad(1,1,2,3,3)_{9}, \quad(1,1,3,3,3)_{10}$,
previous line is continued here $(1,3,3,3,3)_{15}$
$(2,2,2,2,2)_{16},(2,2,2,2,3)_{17},(2,2,2,3,3)_{18} \cdot(2,2,3,3,3)_{19}$

Threshold preference order (continued)

N.B.: $x \approx_{v} y$ iff $v_{1}(x)=v_{1}(y), v_{2}(x)=v_{2}(y)$ and $v_{3}(x)=v_{3}(y)$, i.e. a permutation of coordinates of x gives y, and vice versa.
N.B.: V is the restriction of the leximin from \mathbb{R}^{n} to $X=\{1,2,3\}^{n}$.

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. We have the ordering in ascending V-preference:
$(1,1,1,1,1)_{1}, \quad(1,1,1,1,2)_{2}, \quad(1,1,1,1,3)_{3}$,
$(1,1,1,2,2)_{4}, \quad(1,1,1,2,3)_{5}, \quad(1,1,1,3,3)_{6}$,
$(1,1,2,2,2)_{7}, \quad(1,1,2,2,3)_{8}, \quad(1,1,2,3,3)_{9}, \quad(1,1,3,3,3)_{10}$,
$(1,2,2,2,2)_{11},(1,2,2,2,3)_{12},(1,2,2,3,3)_{13},(1,2,3,3,3)_{14}$,
previous line is continued here $\quad(1,3,3,3,3)_{15}$,
$(2,2,2,2,2)_{16},(2,2,2,2,3)_{17},(2,2,2,3,3)_{18},(2,2,3,3,3)_{19}$,

F. T. Aleskerov's question

According to the threshold preference order V we have:
$(2,2) \succ_{V}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$,
$(2,2,2,2) \succ_{V}(1,3,3,3)$ for $n=4$, and in general

Question (Aleskerov): Given $n \geq 3$, is there a preference order
\succ on $X=\{1,2,3\}^{n}$ with the following properties:
$\left(2,2, k_{1}, \ldots, k_{n-2}\right) \succ\left(1,3, k_{1}, \ldots, k_{n-2}\right)$ but

F. T. Aleskerov's question

According to the threshold preference order V we have:
$(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$,
$(2,2,2,2) \succ_{v}(1,3,3,3)$ for $n=4, \quad$ and in general
$(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) \succ_{v}(1, \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p}) \quad \forall p \geq 2$.
Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{v}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{v}(1,3,3,3)$ for $n=4$, and in general

Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{v}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{v}(1,3,3,3)$ for $n=4$, and in general

Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{v}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{v}(1,3,3,3)$ for $n=4$, and in general

Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{v}(1,3,3,3)$ for $n=4$, and in general

Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{V}(1,3,3,3)$ for $n=4$, and in general

$$
(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) \succ_{v}(1, \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p}) \quad \forall p \geq 2 .
$$

Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

$$
\left(2,2, k_{1}, \ldots, k_{n-2}\right) \succ\left(1,3, k_{1}, \ldots, k_{n-2}\right) \text { but }
$$

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{V}(1,3,3,3)$ for $n=4$, and in general

$$
(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) \succ_{v}(1, \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p}) \quad \forall p \geq 2 .
$$

Question (Aleskerov): Given $n \geq 3$, is there a preference order

- on $\{1,2,3\}^{n}$ with the following properties:

$$
\left(2,2, k_{1}, \ldots, k_{n-2}\right) \succ\left(1,3, k_{1}, \ldots, k_{n-2}\right) \text { but }
$$

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{V}(1,3,3,3)$ for $n=4$, and in general

$$
(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) \succ_{v}(1, \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p}) \quad \forall p \geq 2 \text {. }
$$

Question (Aleskerov): Given $n \geq 3$, is there a preference order

- on $X=\{1,2,3\}^{n}$ with the following properties:

$$
\left(2,2, k_{1}, \ldots, k_{n-2}\right) \succ\left(1,3, k_{1}, \ldots, k_{n-2}\right) \text { but }
$$

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{V}(1,3,3,3)$ for $n=4$, and in general

$$
(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) \succ_{v}(1, \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p}) \quad \forall p \geq 2 .
$$

Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{V}(1,3,3,3)$ for $n=4$, and in general

$$
(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) \succ_{v}(1, \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p}) \quad \forall p \geq 2 .
$$

Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

$$
\left(2,2, k_{1}, \ldots, k_{n-2}\right) \succ\left(1,3, k_{1}, \ldots, k_{n-2}\right) \quad \underline{\text { but }}
$$

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{V}(1,3,3,3)$ for $n=4$, and in general

$$
(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) \succ_{v}(1, \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p}) \quad \forall p \geq 2 .
$$

Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

$$
\begin{aligned}
\left(2,2, k_{1}, \ldots, k_{n-2}\right) & \succ\left(1,3, k_{1}, \ldots, k_{n-2}\right) \text { but } \\
(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) & \text { (1, } \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p})
\end{aligned}
$$

F. T. Aleskerov's question

According to the threshold preference order V we have: $(2,2) \succ_{v}(1,3)$ for $n=2, \quad(2,2,2) \succ_{V}(1,3,3)$ for $n=3$, $(2,2,2,2) \succ_{v}(1,3,3,3)$ for $n=4$, and in general

$$
(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) \succ_{v}(1, \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p}) \quad \forall p \geq 2 .
$$

Question (Aleskerov): Given $n \geq 3$, is there a preference order \succ on $X=\{1,2,3\}^{n}$ with the following properties:

$$
\begin{aligned}
\left(2,2, k_{1}, \ldots, k_{n-2}\right) & \succ\left(1,3, k_{1}, \ldots, k_{n-2}\right) \text { but } \\
(\underbrace{2, \ldots, 2}_{p}, k_{1}, \ldots, k_{n-p}) & \prec(1, \underbrace{3, \ldots, 3}_{p-1}, k_{1}, \ldots, k_{n-p}) \quad \forall p \geq 3 ?
\end{aligned}
$$

Outline

(1) Preference orders

- Borda and threshold preference orders
- Superposition of preference orders
(2) Results
- Axiomatics of utility functions for $B * V$
- The enumerating utility function

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.
M. Aizerman, F. Aleskerov. Theory of Choice. North-Holland, Amsterdam, 1995.

Definition: The superposition of P and Q is given by

$$
P * Q=P \cup(I P \cap Q) \quad \text { (in this order!) }
$$

Thus, $x \succ_{\succ_{*} Q} y$ iff either $x \succ_{p} y$, or $x \approx_{p} y$ and $x \succ_{Q} y$.

Properties:

- $P * Q$ is also a preference order on X.
- $I_{P * Q}=I_{P} \cap I_{Q}$, i.e., $x \approx_{P * Q} y$ iff $x \approx_{P} y$ and $x \approx_{Q} y$.
- $(P * Q) * R=P *(Q * R)$ (associativity of operation $*$).
- $P * Q \neq Q * P$, in general.

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.

M. Aizerman, F. Aleskerov. Theory of Choice. North-Holland, Amsterdam, 1995.

Definition: The supernosition of P and Q is given by

Thus, $x \succ_{\succ_{P * Q}} y$ iff either $x \succ_{P} y$, or $x \approx_{p} y$ and $x \succ_{Q} y$. Properties:

P, in general.

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.
M. Aizerman, F. Aleskerov. Theory of Choice.

North-Holland, Amsterdam, 1995.
Definition: The superposition of P and Q is given by

Thus, $x \succ_{\succ_{*} * Q} y$ iff either $x \succ_{P} y$, or $x \approx_{p} y$ and $x \succ_{Q} y$. Properties:

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.
M. Aizerman, F. Aleskerov. Theory of Choice.

North-Holland, Amsterdam, 1995.
Definition: The superposition of P and Q is given by

$$
P * Q=P \cup\left(I_{P} \cap Q\right) \quad \text { (in this order!). }
$$

Thus, $x \succ_{p * Q} y$ iff either $x \succ_{p} y$, or $x \approx_{p} y$ and $x \succ_{Q} y$.
Properties:

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.
M. Aizerman, F. Aleskerov. Theory of Choice.

North-Holland, Amsterdam, 1995.
Definition: The superposition of P and Q is given by

$$
P * Q=P \cup\left(I_{P} \cap Q\right) \quad \text { (in this order!). }
$$

Thus, $x \succ_{P * Q} y$ iff either $x \succ_{P} y$, or $x \approx_{P} y$ and $x \succ_{Q} y$.
Properties:

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.
M. Aizerman, F. Aleskerov. Theory of Choice.

North-Holland, Amsterdam, 1995.
Definition: The superposition of P and Q is given by

$$
P * Q=P \cup\left(I_{P} \cap Q\right) \quad \text { (in this order!). }
$$

Thus, $x \succ_{P * Q} y$ iff either $x \succ_{P} y$, or $x \approx_{P} y$ and $x \succ_{Q} y$.

Properties:

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.
M. Aizerman, F. Aleskerov. Theory of Choice.

North-Holland, Amsterdam, 1995.
Definition: The superposition of P and Q is given by

$$
P * Q=P \cup\left(I_{P} \cap Q\right) \quad \text { (in this order!). }
$$

Thus, $x \succ_{P * Q} y$ iff either $x \succ_{P} y$, or $x \approx_{P} y$ and $x \succ_{Q} y$.

Properties:

- $P * Q$ is also a preference order on X.

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.
M. Aizerman, F. Aleskerov. Theory of Choice.

North-Holland, Amsterdam, 1995.
Definition: The superposition of P and Q is given by

$$
P * Q=P \cup\left(I_{P} \cap Q\right) \quad \text { (in this order!). }
$$

Thus, $x \succ_{P * Q} y$ iff either $x \succ_{P} y$, or $x \approx_{P} y$ and $x \succ_{Q} y$.

Properties:

- $P * Q$ is also a preference order on X.
- $I_{P * Q}=I_{P} \cap I_{Q}$, i.e., $x \approx_{P_{* Q}} y$ iff $x \approx_{P} y$ and $x \approx_{Q} y$.

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.
M. Aizerman, F. Aleskerov. Theory of Choice.

North-Holland, Amsterdam, 1995.
Definition: The superposition of P and Q is given by

$$
P * Q=P \cup\left(I_{P} \cap Q\right) \quad \text { (in this order!). }
$$

Thus, $x \succ_{\succ_{P} Q} y$ iff either $x \succ_{P} y$, or $x \approx_{P} y$ and $x \succ_{Q} y$.

Properties:

- $P * Q$ is also a preference order on X.
- $I_{P * Q}=I_{P} \cap I_{Q}$, i.e., $x \approx_{P_{* Q}} y$ iff $x \approx_{P} y$ and $x \approx_{Q} y$.
- $(P * Q) * R=P *(Q * R)$ (associativity of operation $*$).

Superposition of preference orders

In order to answer Aleskerov's question, we recall the notion of the superposition of two preference orders P and Q on X.
M. Aizerman, F. Aleskerov. Theory of Choice.

North-Holland, Amsterdam, 1995.
Definition: The superposition of P and Q is given by

$$
P * Q=P \cup\left(I_{P} \cap Q\right) \quad \text { (in this order!). }
$$

Thus, $x \succ_{\succ_{P} Q} y$ iff either $x \succ_{P} y$, or $x \approx_{P} y$ and $x \succ_{Q} y$.

Properties:

- $P * Q$ is also a preference order on X.
- $I_{P * Q}=I_{P} \cap I_{Q}$, i.e., $x \approx_{P_{* Q}} y$ iff $x \approx_{P} y$ and $x \approx_{Q} y$.
- $(P * Q) * R=P *(Q * R)$ (associativity of operation $*$).
- $P * Q \neq Q * P$, in general.

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.
Note that $V=V_{1} * V_{2}$, where $x \succ_{V_{k}} y$ iff $v_{k}(x)<v_{k}(y)(k=1,2)$.
Thus, we have $B * V=B \cup\left(I_{B} \cap V\right)=B * V_{1}$, or
$x \succ_{B * V} y$ iff either $x \succ_{B} y$, or $x \approx_{B} y$ and $x \succ_{V} y$
iff either $S(x)>S(y)$, or $S(x)=S(y)$ and $v_{1}(x)<v_{1}(y)$.
Moreover,

- $I_{B * V}=I_{B} \cap I_{V}=I_{V}$, i.e. $x \approx_{B+V} y$ iff x can be transformed into y by a permutation of its coordinates, and vice versa.

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.

Moreover,

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.
Note that $V=V_{1} * V_{2}$, where $x \succ_{v_{k}} y$ iff $v_{k}(x)<v_{k}(y)(k=1,2)$.

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.
Note that $V=V_{1} * V_{2}$, where $x \succ_{v_{k}} y$ iff $v_{k}(x)<v_{k}(y)(k=1,2)$.
Thus, we have $B * V=B \cup\left(I_{B} \cap V\right)=B * V_{1}$, or

Moreover,

- $I_{B * V}=I_{B} \cap I_{V}=I_{V}$, i.e. $x \approx_{B, V} y$ iff x can be transformed
into y by a permutation of its coordinates, and vice versa.
\square

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.
Note that $V=V_{1} * V_{2}$, where $x \succ_{v_{k}} y$ iff $v_{k}(x)<v_{k}(y)(k=1,2)$.
Thus, we have $B * V=B \cup\left(I_{B} \cap V\right)=B * V_{1}$, or
$x \succ_{B * V} y$ iff either $x \succ_{B} y$, or $x \approx_{B} y$ and $x \succ_{V} y$
iff either $S(x)>S(y)$, or $S(x)=S(y)$ and $v_{1}(x)<v_{1}(y)$.
Moreover,

- $I_{B * V}=I_{B} \cap I_{V}=I_{V}$, i.e. $x \approx_{B+V} y$ iff x can be transformed
into y by a permutation of its coordinates, and vice versa.
- $V * B=V$ (and so, $V * B \neq B * V)$.

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.
Note that $V=V_{1} * V_{2}$, where $x \succ_{v_{k}} y$ iff $v_{k}(x)<v_{k}(y)(k=1,2)$.
Thus, we have $B * V=B \cup\left(I_{B} \cap V\right)=B * V_{1}$, or
$x \succ_{B * V} y$ iff either $x \succ_{B} y$, or $x \approx_{B} y$ and $x \succ_{V} y$
iff either $S(x)>S(y)$, or $S(x)=S(y)$ and $v_{1}(x)<v_{1}(y)$.
Moreover,

- $I_{B * V}=I_{B} \cap I_{V}=I_{V}$, i.e. $x \approx_{B+V} y$ iff x can be transformed
into y by a permutation of its coordinates, and vice versa.
- $V * B=V$ (and so, $V * B \neq B * V)$.

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.
Note that $V=V_{1} * V_{2}$, where $x \succ_{v_{k}} y$ iff $v_{k}(x)<v_{k}(y)(k=1,2)$.
Thus, we have $B * V=B \cup\left(I_{B} \cap V\right)=B * V_{1}$, or
$x \succ_{B * V} y$ iff either $x \succ_{B} y$, or $x \approx_{B} y$ and $x \succ_{V} y$ iff either $S(x)>S(y)$, or $S(x)=S(y)$ and $v_{1}(x)<v_{1}(y)$.

Moreover,

- $I_{B * V}=I_{B} \cap I_{V}=I_{V}$, i.e. $x \approx_{B * V} y$ iff x can be transformed into y by a permutation of its coordinates, and vice versa. - $V * B=V$ (and so, $V * B \neq B * V$).

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.
Note that $V=V_{1} * V_{2}$, where $x \succ_{v_{k}} y$ iff $v_{k}(x)<v_{k}(y)(k=1,2)$.
Thus, we have $B * V=B \cup\left(I_{B} \cap V\right)=B * V_{1}$, or
$x \succ_{B * V} y$ iff either $x \succ_{B} y$, or $x \approx_{B} y$ and $x \succ_{V} y$ iff either $S(x)>S(y)$, or $S(x)=S(y)$ and $v_{1}(x)<v_{1}(y)$.

Moreover,

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.
Note that $V=V_{1} * V_{2}$, where $x \succ_{v_{k}} y$ iff $v_{k}(x)<v_{k}(y)(k=1,2)$.
Thus, we have $B * V=B \cup\left(I_{B} \cap V\right)=B * V_{1}$, or
$x \succ_{B * V} y$ iff either $x \succ_{B} y$, or $x \approx_{B} y$ and $x \succ_{V} y$ iff either $S(x)>S(y)$, or $S(x)=S(y)$ and $v_{1}(x)<v_{1}(y)$.

Moreover,

- $I_{B * V}=I_{B} \cap I_{V}=I_{V}$, i.e. $x \approx_{B * V} y$ iff x can be transformed into y by a permutation of its coordinates, and vice versa.

Superposition of preference orders continued

Answer to Aleskerov's question: the order \succ is the superposition of the Borda and threshold preference orders $B * V$.
Note that $V=V_{1} * V_{2}$, where $x \succ_{v_{k}} y$ iff $v_{k}(x)<v_{k}(y)(k=1,2)$.
Thus, we have $B * V=B \cup\left(I_{B} \cap V\right)=B * V_{1}$, or
$x \succ_{B * V} y$ iff either $x \succ_{B} y$, or $x \approx_{B} y$ and $x \succ_{V} y$ iff either $S(x)>S(y)$, or $S(x)=S(y)$ and $v_{1}(x)<v_{1}(y)$.

Moreover,

- $I_{B * V}=I_{B} \cap I_{V}=I_{V}$, i.e. $x \approx_{B * V} y$ iff x can be transformed into y by a permutation of its coordinates, and vice versa.
- $V * B=V$ (and so, $V * B \neq B * V$).

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. The ordinal number N will be found below. We have:

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. The ordinal number N will be found below. We have:

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. The ordinal number N will be found below. We have:

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. The ordinal number N will be found below. We have:

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. The ordinal number N will be found below. We have:

$(1,1,1,1,1)_{1}, \quad(1,1,1,1,2)_{2}$,	$S(x)=5,6$
$(1,1,1, \underline{1,3})_{3}, \quad(1,1,1, \underline{2,2})_{4}$,	$S(x)=7$
$(1,1,1,2,3)_{5}, \quad(1,1,2,2,2) 6$,	$S(x)=8$

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. The ordinal number N will be found below. We have:

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. The ordinal number N will be found below. We have:

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. The ordinal number N will be found below. We have:

Ordering $\{1,2,3\}^{n}$ in ascending $B * V$-preference

Example. Let $n=5$ and $x=\left(x_{1}, \ldots, x_{5}\right)_{N}$ be a representative of the indifference class with $x_{1} \leq \cdots \leq x_{5}$. The ordinal number N will be found below. We have:

$$
\begin{aligned}
& (1,1,1,1,1)_{1}, \quad(1,1,1,1,2)_{2} \text {, } \\
& (1,1,1, \underline{1,3})_{3}, \quad(1,1,1, \underline{2,2})_{4} \text {, } \\
& (1, \mathbf{1}, \mathbf{1}, 2, \mathbf{3})_{5}, \quad(1, \mathbf{1}, \underline{\underline{2,2,2}})_{6} \text {, } \\
& (1,1, \underline{\underline{1,3,3}})_{7}, \quad(1,1,2,2,3)_{8}, \quad(1,2,2,2,2)_{9} \text {, } \\
& (1,1,2,3,3)_{10},(1,2,2,2,3)_{11},(2,2,2,2,2)_{12} \text {, } \\
& (1,1,3,3,3)_{13},(1,2,2,3,3)_{14},(2,2,2,2,3)_{15} \text {, } \\
& (1,2,3,3,3)_{16}, \quad(2,2,2,3,3)_{17}, \\
& (1,3,3,3,3)_{18}, \quad(2,2,3,3,3)_{19} \text {, } \\
& (2,3,3,3,3)_{20},(3,3,3,3,3)_{21} \\
& \begin{array}{l}
S(x)=5,6 \\
S(x)=7 \\
S(x)=8 \\
S(x)=9 \\
S(x)=10 \\
S(x)=11 \\
S(x)=12 \\
S(x)=13 \\
S(x)=14,15
\end{array}
\end{aligned}
$$

Outline

(1) Preference orders

- Borda and threshold preference orders
- Superposition of preference orders
(2) Results
- Axiomatics of utility functions for $B * V$
- The enumerating utility function

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if
given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$; e.g., $\quad x=(1,1,2,3) \approx_{B * V}(3,1,1,2)=y$
A. 2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$; e.g. , $x=(1,1,2,2) \succ_{B * v}(1,1,1,3)=y$
A.3: $v_{3}(y)=0$ and $v_{1}(x)+1=v_{1}(y)+v_{3}(x)$ imply $F(x)>F(y)$; e.g., $\quad x=(1,1,3,3) \succ_{\text {But }}(1,2,2,2)=y$
A.4: $v_{1}(y)=0$ and $v_{1}(x)+v_{3}(y)+1=v_{3}(x)$ imply $F(x)>F(y)$. e.g., $\quad x=(1,3,3,3) \succ_{B * v}(2,2,2,3)=y$

Example: $F(x)=n S(x)-v_{1}(x), x \in X$, is paytility, fungtion,

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:

$$
\begin{gathered}
v_{1}(x)=v_{1}(y) \text { and } v_{3}(x)=v_{3}(y) \text { imply } F(x)=F(y) ; \\
x=(1,1,2,3) \approx_{B, v}(3,1,1,2)=y
\end{gathered}
$$

A.2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$; e.g., $\quad x=(1,1,2,2) \succ_{\text {B- }}(1,1,1,3)=y$
A.3: $v_{3}(y)=0$ and $v_{1}(x)+1=v_{1}(y)+v_{3}(x)$ imply $F(x)>F(y)$; e.g., $\quad x=(1,1,3,3) \succ_{B * V}(1,2,2,2)=y$
A. 4: $v_{1}(y)=0$ and $v_{1}(x)+v_{3}(y)+1=v_{3}(x)$ imply $F(x)>F(y)$. e.g.,$\quad x=(1,3,3,3) \succ_{B * v}(2,2,2,3)=y$

Example: $F(x)=n S(x)-v_{1}(x), x \in X$, is pautilitity, funation, 呈,

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if
given $x, y \in X$, the following four axioms are satisfied:

$$
\begin{aligned}
& v_{1}(x)=v_{1}(y) \text { and } v_{3}(x)=v_{3}(y) \text { imply } F(x)=F(y) ; \\
& \text { e.g., } \quad x=(1,1,2,3) \approx_{B * v}(3,1,1,2)=y
\end{aligned}
$$

A.2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$; e.g., $\quad x=(1,1,2,2) \succ_{\text {BuV }}(1,1,1,3)=y$
A.3: $v_{3}(y)=0$ and $v_{1}(x)+1=v_{1}(y)+v_{3}(x)$ imply $F(x)>F(y)$; e.g., $\quad x=(1,1,3,3) \succ_{B * V}(1,2,2,2)=y$
A. 4: $v_{1}(y)=0$ and $v_{1}(x)+v_{3}(y)+1=v_{3}(x)$ imply $F(x)>F(y)$. e.g., $\quad x=(1,3,3,3) \succ_{B * v}(2,2,2,3)=y$

Example: $F(x)=n S(x)-v_{1}(x), x \in X$, is pattility, fungtion, 首,

Axiomatics of utility functions for $B * V$ The enumerating utility function

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if
given $x, y \in X$, the following four axioms are satisfied:

Example

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:

Example: $F(x)=n S(x)-v_{1}(x), x \in X$, is putility, function,

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$;

Example: $F(x)=n S(x)-v_{1}(x), x \in X$, is patility, fungtion,

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$;

$$
\text { e.g., } \quad x=(1,1,2,3) \approx_{B * V}(3,1,1,2)=y
$$

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$;

$$
e . g ., \quad x=(1,1,2,3) \approx_{B * V}(3,1,1,2)=y
$$

A.2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$;

\square
$v_{1}(y)=0$ and $v_{1}(x)+v_{3}(y)+1=v_{3}(x)$ imply $F(x)>F(y)$.
\square
Example: $F(x)=n S(x)-v_{1}(x), x \in X$, is paytility, fungtion,

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$;

$$
\text { e.g., } \quad x=(1,1,2,3) \approx_{B * V}(3,1,1,2)=y
$$

A.2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$;

$$
\mathrm{e} . \mathrm{g.}, \quad x=(1,1,2,2) \succ_{B * V}(1,1,1,3)=y
$$

$\begin{aligned} \text { A.3: } & v_{3}(y)=0 \text { and } v_{1}(x)+1=v_{1}(y)+v_{3}(x) \text { imply } F(x)>F(y) ; \\ & \text { e.g. } \quad x=(1,1,3,3) \succ_{B * V}(1,2,2,2)=y \\ \text { A.4: } & v_{1}(y)=0 \text { and } v_{1}(x)+v_{3}(y)+1=v_{3}(x) \text { imply } F(x)>F(y) .\end{aligned}$

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$;

$$
\text { e.g., } \quad x=(1,1,2,3) \approx_{B * V}(3,1,1,2)=y
$$

A.2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$;

$$
e . g ., \quad x=(1,1,2,2) \succ_{B * V}(1,1,1,3)=y
$$

A.3: $v_{3}(y)=0$ and $v_{1}(x)+1=v_{1}(y)+v_{3}(x)$ imply $F(x)>F(y)$;

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$;

$$
\text { e.g., } \quad x=(1,1,2,3) \approx_{B * V}(3,1,1,2)=y
$$

A.2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$;

$$
\mathrm{e} . \mathrm{g.,} \quad x=(1,1,2,2) \succ_{B * V}(1,1,1,3)=y
$$

A.3: $v_{3}(y)=0$ and $v_{1}(x)+1=v_{1}(y)+v_{3}(x)$ imply $F(x)>F(y)$;

$$
\text { e.g., } \quad x=(1,1,3,3) \succ_{B * V}(1,2,2,2)=y
$$

A.4: $v_{1}(y)=0$ and $v_{1}(x)+v_{3}(y)+1=v_{3}(x)$ imply $F(x)>F(y)$

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$;

$$
\text { e.g., } \quad x=(1,1,2,3) \approx_{B * V}(3,1,1,2)=y
$$

A.2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$;

$$
\mathrm{e} . \mathrm{g.,} \quad x=(1,1,2,2) \succ_{B * V}(1,1,1,3)=y
$$

A.3: $v_{3}(y)=0$ and $v_{1}(x)+1=v_{1}(y)+v_{3}(x)$ imply $F(x)>F(y)$;

$$
\text { e.g., } \quad x=(1,1,3,3) \succ_{B * V}(1,2,2,2)=y
$$

A.4: $v_{1}(y)=0$ and $v_{1}(x)+v_{3}(y)+1=v_{3}(x)$ imply $F(x)>F(y)$.

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$;

$$
\text { e.g., } \quad x=(1,1,2,3) \approx_{B * V}(3,1,1,2)=y
$$

A.2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$;

$$
e . g ., \quad x=(1,1,2,2) \succ_{B * V}(1,1,1,3)=y
$$

A.3: $v_{3}(y)=0$ and $v_{1}(x)+1=v_{1}(y)+v_{3}(x)$ imply $F(x)>F(y)$;

$$
\mathrm{e} . \mathrm{g.}, \quad x=(1,1,3,3) \succ_{B * V}(1,2,2,2)=y
$$

A.4: $v_{1}(y)=0$ and $v_{1}(x)+v_{3}(y)+1=v_{3}(x)$ imply $F(x)>F(y)$.

$$
\mathrm{e.g.,} \quad x=(1,3,3,3) \succ_{B * V}(2,2,2,3)=y
$$

Example: $F(x)=n S(x)-v_{1}(x), x \in X$, is patility, funaction,

Theorem (Chistyakov, 2014)

A function $F: X=\{1,2,3\}^{n} \rightarrow \mathbb{R}$ is a utility function for $B * V$ (that is, $B * V=P(F)$) if and only if given $x, y \in X$, the following four axioms are satisfied:
A.1: $v_{1}(x)=v_{1}(y)$ and $v_{3}(x)=v_{3}(y)$ imply $F(x)=F(y)$;

$$
\text { e.g., } \quad x=(1,1,2,3) \approx_{B * V}(3,1,1,2)=y
$$

A.2: $v_{1}(x)+1=v_{1}(y)$ and $v_{3}(x)+1=v_{3}(y)$ imply $F(x)>F(y)$;

$$
\mathrm{e} . \mathrm{g.,} \quad x=(1,1,2,2) \succ_{B * V}(1,1,1,3)=y
$$

A.3: $v_{3}(y)=0$ and $v_{1}(x)+1=v_{1}(y)+v_{3}(x)$ imply $F(x)>F(y)$;

$$
\mathrm{e.g.,} \quad x=(1,1,3,3) \succ_{B * V}(1,2,2,2)=y
$$

A.4: $v_{1}(y)=0$ and $v_{1}(x)+v_{3}(y)+1=v_{3}(x)$ imply $F(x)>F(y)$.

$$
\mathrm{e.g.,} \quad x=(1,3,3,3) \succ_{B * V}(2,2,2,3)=y
$$

Example: $F(x)=n S(x)-v_{1}(x), x \in X$, is a utility function,

Outline

(1) Preference orders
 - Borda and threshold preference orders
 - Superposition of preference orders

(2) Results

- Axiomatics of utility functions for $B * V$
- The enumerating utility function

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by $c(A)=\left\{x \in A: y \nsucc_{P} x\right.$ for all $\left.y \in A\right\}$ (choice function) the set of most P-preferred alternatives \times from A.

- Set $X_{1}^{\prime}=c(X)$ (alternatives of rank 1).
- If $k \geq 2$ and disjoint $X_{1}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$ are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$.
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=\left|X / I_{P}\right|$
- Reverse the order of sets: $X_{k}=X_{k-k+1}^{\prime}$ for $k=1,2$,
- Decomposition $X=X_{1} \cup \cdots \cup X_{k}$ is the ranking of X : $x \succ_{p} y$ iff $x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some $1 \leq k_{1}<k_{2} \leq K$;
$x \approx_{p} y$ iff $x, y \in X_{k}$ for some $1 \leq k \leq K$.

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by
$c(A)=\left\{x \in A: y \not_{p} x\right.$ for all $\left.y \in A\right\}$
(choice function)
the set of most P-preferred alternatives x from A.

- Set $X!=c(X)$ (alternatives of rank 1)
- If $k \geq 2$ and disjoint $X_{1}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$
are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disioint union) with $K=\left|X / I_{P}\right|$
- Reverse the order of sets: $X_{k}=X_{k-k+1}^{\prime}$ for $k=1,2$,
- Decomposition $X=X_{1} \cup \cdots \cup X_{K}$ is the ranking of X : $x \succ_{p} y \quad$ iff $\quad x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some $1 \leq k_{1}<k_{2} \leq K$;
$x \approx_{p} y$ iff $x, y \in X_{k}$ for some 1

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by $c(A)=\left\{x \in A: y \not \not_{p} x\right.$ for all $\left.y \in A\right\} \quad$ (choice function) the set of most P-preferred alternatives x from A. - Set $X_{1}^{\prime}=c(X)$ (alternatives of rank 1).

- If $k \geq 2$ and disjoint $X_{1}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i} \neq X$
are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=\left|X / I_{P}\right|$
- Reverse the order of sets: $X_{k}=X_{k-k+1}^{\prime}$ for $k=1,2$,
- Decomposition $X=X_{1} \cup \cdots \cup X_{K}$ is the ranking of X : $x \succ_{p} y \quad$ iff $\quad x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some $1 \leq k_{1}<k_{2} \leq K$; $x \approx_{p} y$ iff $x, y \in X_{k}$ for some 1

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by

$$
c(A)=\left\{x \in A: y \nsucc_{P} x \text { for all } y \in A\right\} \quad \text { (choice function) }
$$

the set of most P-preferred alternatives x from A.

- Set $X_{1}^{\prime}=\mathrm{c}(X)$ (alternatives of rank 1).
- If $k \geq 2$ and disjoint $X_{1}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$ are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=\mid X / I_{P}$
- Reverse the order of sets: $X_{k}=X_{K-k+1}^{\prime}$ for $k=1,2$,
- Decomposition
 $x \succ_{p} y$ iff $x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some $1 \leq k_{1}<k_{2} \leq K$; $x \approx_{p} y$ iff $x, y \in X_{k}$ for some 1

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by

$$
c(A)=\left\{x \in A: y \nsucc_{p} x \text { for all } y \in A\right\} \quad \text { (choice function) }
$$

the set of most P-preferred alternatives x from A.

- Set $X_{1}^{\prime}=\mathrm{c}(X)$ (alternatives of rank 1).
- If $k \geq 2$ and disjoint $X_{1}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$
are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$
e We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=|X / I P|$
- Reverse the order of sets: $X_{k}=X_{K-k+1}^{\prime}$ for $k=1,2$,
- Decomposition
 $x \succ_{p} y$ iff $x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some 1 $x \approx_{p} y$ iff $x, y \in X_{k}$ for some 1

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by

$$
c(A)=\left\{x \in A: y \not \nsucc p_{\rho} x \text { for all } y \in A\right\} \quad \text { (choice function) }
$$ the set of most P-preferred alternatives x from A.

- Set $X_{1}^{\prime}=\mathrm{c}(X)$ (alternatives of rank 1).
- If $k \geq 2$ and disjoint $X_{1}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$ are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$.
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=\left|X / I_{P}\right|$
- Reverse the order of sets: $X_{k}=X_{k-k+1}^{\prime}$ for $k=1,2$,
- Decomnosition $X=X_{1} \cup \cdots \cup X_{K}$ is the ranking of X. $x \succ_{p} y$ iff $x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some $1 \leq k_{1}<k_{2} \leq K$; $x \approx_{p} y$ iff $x, y \in X_{k}$ for some 1

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by

$$
c(A)=\left\{x \in A: y \nsucc_{p} x \text { for all } y \in A\right\} \quad \text { (choice function) }
$$

the set of most P-preferred alternatives x from A.

- Set $X_{1}^{\prime}=\mathrm{c}(X)$ (alternatives of rank 1).
- If $k \geq 2$ and disjoint $X_{i}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$ are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$.
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=\left|X / I_{P}\right|$.
- Reverse the order of sets: $X_{k}=X_{k-k+1}^{\prime}$ for $k=1,2$,
- Decomposition $X=X_{1} \cup \cdots \cup X_{K}$ is the ranking of X : $x \succ_{p} y$ iff $x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some $1 \leq k_{1}<k_{2} \leq K$; $x \approx_{p} y$ iff $x, y \in X_{k}$ for some 1

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by

$$
c(A)=\left\{x \in A: y \nsucc_{p} x \text { for all } y \in A\right\} \quad \text { (choice function) }
$$

the set of most P-preferred alternatives x from A.

- Set $X_{1}^{\prime}=\mathrm{c}(X)$ (alternatives of rank 1).
- If $k \geq 2$ and disjoint $X_{1}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$ are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$.
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=\left|X / I_{P}\right|$.
- Reverse the order of sets: $X_{k}=X_{K-k+1}^{\prime}$ for $k=1,2, \ldots, K$.
- Decomposition $X=X_{1} \cup \cdots \cup X_{K}$ is the ranking of X : $x \succ_{p} y$ iff $x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some 1 $x \approx_{p} y$ iff $x, y \in X_{k}$ for some 1

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by

$$
c(A)=\left\{x \in A: y \nsucc_{p} x \text { for all } y \in A\right\} \quad \text { (choice function) }
$$

the set of most P-preferred alternatives x from A.

- Set $X_{1}^{\prime}=\mathrm{c}(X)$ (alternatives of rank 1).
- If $k \geq 2$ and disjoint $X_{1}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$ are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$.
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=\left|X / I_{P}\right|$.
- Reverse the order of sets: $X_{k}=X_{k-k+1}^{\prime}$ for $k=1,2, \ldots, K$.
- Decomposition $X=X_{1} \cup \cdots \cup X_{K}$ is the ranking of X :

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by

$$
c(A)=\left\{x \in A: y \nsucc_{p} x \text { for all } y \in A\right\} \quad \text { (choice function) }
$$

the set of most P-preferred alternatives x from A.

- Set $X_{1}^{\prime}=\mathrm{c}(X)$ (alternatives of rank 1).
- If $k \geq 2$ and disjoint $X_{1}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$ are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$.
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=\left|X / I_{P}\right|$.
- Reverse the order of sets: $X_{k}=X_{K-k+1}^{\prime}$ for $k=1,2, \ldots, K$.
- Decomposition $X=X_{1} \cup \cdots \cup X_{K}$ is the ranking of X : $x \succ_{p} y$ iff $x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some $1 \leq k_{1}<k_{2} \leq K$;

Ranking alternatives (F. Hausdorff: Set Theory)

Let P be a preference order on X. Given $A \subset X$, denote by

$$
c(A)=\left\{x \in A: y \nsucc_{p} x \text { for all } y \in A\right\} \quad \text { (choice function) }
$$

the set of most P-preferred alternatives x from A.

- Set $X_{1}^{\prime}=\mathrm{c}(X)$ (alternatives of rank 1).
- If $k \geq 2$ and disjoint $X_{i}^{\prime}, \ldots, X_{k-1}^{\prime} \subset X$ with $\bigcup_{i=1}^{k-1} X_{i}^{\prime} \neq X$ are already chosen, then put $X_{k}^{\prime}=\mathrm{c}\left(X \backslash\left(X_{1}^{\prime} \cup \cdots \cup X_{k-1}^{\prime}\right)\right)$.
- We have $X=X_{1}^{\prime} \cup \cdots \cup X_{K}^{\prime}$ (disjoint union) with $K=\left|X / I_{P}\right|$.
- Reverse the order of sets: $X_{k}=X_{k-k+1}^{\prime}$ for $k=1,2, \ldots, K$.
- Decomposition $X=X_{1} \cup \cdots \cup X_{K}$ is the ranking of X : $x \succ_{p} y$ iff $x \in X_{k_{2}}$ and $y \in X_{k_{1}}$ for some $1 \leq k_{1}<k_{2} \leq K$; $x \approx_{\rho} y$ iff $x, y \in X_{k}$ for some $1 \leq k \leq K$.

Enumerating utility function: definition

Define the surjective function $N: X \rightarrow\{1,2, \ldots, K\}$ by:

- given $x \in X=X_{1} \cup \cdots \cup X_{K}$, we have $x \in X_{k}$ for some unique number $1 \leq k \leq K$;
- we set $N(x)=k$.
$N(x)$ is said to be the enumerating utility function for P.
- N is a utility function for $P: x \succ_{P} y$ iff $N(x)>N(y)(x, y \in X)$.
- $F: X \rightarrow \mathbb{R}$ is a utility function for P iff \exists an increasing function $f:\{1,2, \ldots, K\} \rightarrow \mathbb{R}$ s.t. $F(x)=f(N(x)) \forall x \in X$.

Enumerating utility function: definition

Define the surjective function $N: X \rightarrow\{1,2, \ldots, K\}$ by:

- given $x \in X=X_{1} \cup \cdots \cup X_{K}$, we have $x \in X_{k}$ for some unique number $1 \leq k \leq K$;
- we set $N(x)=k$.
$N(x)$ is said to be the enumerating utility function for P.
- N is a utility function for $P: x \succ_{p} y$ iff $N(x)>N(y)(x, y \in X)$.
- $F: X \rightarrow \mathbb{R}$ is a utility function for P iff \exists an increasing function $f:\{1,2, \ldots, K\} \rightarrow \mathbb{R}$ s.t. $F(x)=f(N(x)) \forall x \in X$.

Enumerating utility function: definition

Define the surjective function $N: X \rightarrow\{1,2, \ldots, K\}$ by:

- given $x \in X=X_{1} \cup \cdots \cup X_{K}$, we have $x \in X_{k}$ for some unique number $1 \leq k \leq K$;
- we set $N(x)=k$.
$N(x)$ is said to be the enumerating utility function for P.
- N is a utility function for $P: x \succ_{p} y$ iff $N(x)>N(y)(x, y \in X)$.
- $F: X \rightarrow \mathbb{R}$ is a utility function for P iff \exists an increasing function $f:\{1,2, \ldots, K\} \rightarrow \mathbb{R}$ s.t. $F(x)=f(N(x)) \forall x \in X$.

Enumerating utility function: definition

Define the surjective function $N: X \rightarrow\{1,2, \ldots, K\}$ by:

- given $x \in X=X_{1} \cup \cdots \cup X_{K}$, we have $x \in X_{k}$ for some unique number $1 \leq k \leq K$;
- we set $N(x)=k$.
$N(x)$ is said to be the enumerating utility function for P.
- N is a utility function for $P: x \succ_{p} y$ iff $N(x)>N(y)(x, y \in X)$.
- $F: X \rightarrow \mathbb{R}$ is a utility function for $P \quad$ iff $\quad \exists$ an increasing
function $f:\{1,2, \ldots, K\} \rightarrow \mathbb{R}$ s.t. $F(x)=f(N(x)) \forall x \in X$.

Enumerating utility function: definition

Define the surjective function $N: X \rightarrow\{1,2, \ldots, K\}$ by:

- given $x \in X=X_{1} \cup \cdots \cup X_{K}$, we have $x \in X_{k}$ for some unique number $1 \leq k \leq K$;
- we set $N(x)=k$.
$N(x)$ is said to be the enumerating utility function for P.
- N is a utility function for $P: x \succ_{p} y$ iff $N(x)>N(y)(x, y \in X)$.
- $F: X \rightarrow \mathbb{R}$ is a utility function for P iff \exists an increasing
function $f:\{1,2, \ldots, K\} \rightarrow \mathbb{R}$ s.t. $F(x)=f(N(x)) \forall x \in X$.

Enumerating utility function: definition

Define the surjective function $N: X \rightarrow\{1,2, \ldots, K\}$ by:

- given $x \in X=X_{1} \cup \cdots \cup X_{K}$, we have $x \in X_{k}$ for some unique number $1 \leq k \leq K$;
- we set $N(x)=k$.
$N(x)$ is said to be the enumerating utility function for P.
- N is a utility function for $P: x \succ_{P} y$ iff $N(x)>N(y)(x, y \in X)$.
- $F: X \rightarrow \mathbb{R}$ is a utility function for P iff \exists an increasing function $f:\{1,2$,

Enumerating utility function: definition

Define the surjective function $N: X \rightarrow\{1,2, \ldots, K\}$ by:

- given $x \in X=X_{1} \cup \cdots \cup X_{K}$, we have $x \in X_{k}$ for some unique number $1 \leq k \leq K$;
- we set $N(x)=k$.
$N(x)$ is said to be the enumerating utility function for P.
- N is a utility function for $P: x \succ_{P} y$ iff $N(x)>N(y)(x, y \in X)$.
- $F: X \rightarrow \mathbb{R}$ is a utility function for P iff \exists an increasing function $f:\{1,2, \ldots, K\} \rightarrow \mathbb{R}$ s.t. $F(x)=f(N(x)) \forall x \in X$.

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$.

 Let [a] be the greatest integer, which does not exceed a.
Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then

$$
N(x)=\left[\frac{S(x)-n}{2}\right] \cdot\left[\frac{S(x)-n+1}{2}\right]+n+1-v_{1}(x)
$$

and if $2 n+1 \leq S(x) \leq 3 n$, then

$$
\begin{aligned}
N(x)= & {\left[\frac{S(x)-n}{2}\right] \cdot\left[\frac{S(x)-n+1}{2}\right]+n-} \\
& -\frac{(S(x)-2 n+1) \cdot(S(x)-2 n-2)}{2}-v_{1}(x)
\end{aligned}
$$

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.
Theorem (Chistyakov, 2014)
A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then

$$
N(x)=\left[\frac{S(x)-n}{2}\right] \cdot\left[\frac{S(x)-n+1}{2}\right]+n+1-v_{1}(x),
$$

and if $2 n+1 \leq S(x) \leq 3 n$, then

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.

Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then

and if $2 n+1 \leq S(x) \leq 3 n$, then

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.

Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then

and if $2 n+1 \leq S(x) \leq 3 n$, then

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.

Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then
and if $2 n+1 \leq S(x) \leq 3 n$, then

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.

Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then

and if $2 n+1 \leq S(x) \leq 3 n$, then

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.

Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows:

and if $2 n+1 \leq S(x) \leq 3 n$, then

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.

Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then
and if $2 n+1 \leq S(x) \leq 3 n$, then

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.

Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then

$$
N(x)=\left[\frac{S(x)-n}{2}\right] \cdot\left[\frac{S(x)-n+1}{2}\right]+n+1-v_{1}(x)
$$

and if $2 n+1 \leq S(x) \leq 3 n$, then

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.

Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then

$$
N(x)=\left[\frac{S(x)-n}{2}\right] \cdot\left[\frac{S(x)-n+1}{2}\right]+n+1-v_{1}(x)
$$

and if $2 n+1 \leq S(x) \leq 3 n$, then

Since $I_{B * V}=I_{V}$, for $P=B * V$ we have $K=(n+2)(n+1) / 2$. Let [a] be the greatest integer, which does not exceed a.

Theorem (Chistyakov, 2014)

A function N maps $X=\{1,2,3\}^{n}$ onto $\{1,2, \ldots, K\}$ and is the enumerating utility function for $B * V$ on X if and only if it is given as follows: if $n \leq S(x) \leq 2 n$, then

$$
N(x)=\left[\frac{S(x)-n}{2}\right] \cdot\left[\frac{S(x)-n+1}{2}\right]+n+1-v_{1}(x)
$$

and if $2 n+1 \leq S(x) \leq 3 n$, then

$$
\begin{aligned}
N(x)= & {\left[\frac{S(x)-n}{2}\right] \cdot\left[\frac{S(x)-n+1}{2}\right]+n-} \\
& -\frac{(S(x)-2 n+1) \cdot(S(x)-2 n-2)}{2}-v_{1}(x)
\end{aligned}
$$

Summary

In practical problems of ranking large sets (e.g., consisting of millions of alternatives), the crucial feature is the computation of the ordinal number of an alternative in the resulting ranking. The procedure of ranking under consideration can be made more effective provided a utility function (coherent with the ranking) is found in a suitable form.

We have considered a new decision making procedure, the superposition of the Borda and threshold preferences, characterized it axiomatically and found an explicit form for the evaluation of the enumerating (economic) utility function for it.

Summary

In practical problems of ranking large sets (e.g., consisting of millions of alternatives), the crucial feature is the computation of the ordinal number of an alternative in the resulting ranking.
The procedure of ranking under consideration can be made more effective provided a utility function (coherent with the ranking) is found in a suitable form

We have considered a new decision making procedure, the superposition of the Borda and threshold preferences, characterized it axiomatically and found an explicit form for the evaluation of the enumerating (economic) utility function for it.

Summary

In practical problems of ranking large sets (e.g., consisting of millions of alternatives), the crucial feature is the computation of the ordinal number of an alternative in the resulting ranking. The procedure of ranking under consideration can be made more effective provided a utility function (coherent with the ranking) is found in a suitable form.

We have considered a new decision making procedure, the superposition of the Borda and threshold preferences, characterized it axiomatically and found an explicit form for the evaluation of the enumerating (economic) utility function for it.

Summary

In practical problems of ranking large sets (e.g., consisting of millions of alternatives), the crucial feature is the computation of the ordinal number of an alternative in the resulting ranking. The procedure of ranking under consideration can be made more effective provided a utility function (coherent with the ranking) is found in a suitable form.

We have considered a new decision making procedure,
characterized it axiomatically and found an explicit form for the
evaluation of the enumerating (economic) utility function for it.

Summary

In practical problems of ranking large sets (e.g., consisting of millions of alternatives), the crucial feature is the computation of the ordinal number of an alternative in the resulting ranking. The procedure of ranking under consideration can be made more effective provided a utility function (coherent with the ranking) is found in a suitable form.

We have considered a new decision making procedure, the superposition of the Borda and threshold preferences, characterized it axiomatically and found an explicit form for the evaluation of the enumerating (economic) utility function for it.

Summary

In practical problems of ranking large sets (e.g., consisting of millions of alternatives), the crucial feature is the computation of the ordinal number of an alternative in the resulting ranking. The procedure of ranking under consideration can be made more effective provided a utility function (coherent with the ranking) is found in a suitable form.

We have considered a new decision making procedure, the superposition of the Borda and threshold preferences, characterized it axiomatically and found an explicit form for the
evaluation of the enumerating (economic) utility function for it.

Summary

In practical problems of ranking large sets (e.g., consisting of millions of alternatives), the crucial feature is the computation of the ordinal number of an alternative in the resulting ranking. The procedure of ranking under consideration can be made more effective provided a utility function (coherent with the ranking) is found in a suitable form.

We have considered a new decision making procedure, the superposition of the Borda and threshold preferences, characterized it axiomatically and found an explicit form for the evaluation of the enumerating (economic) utility function for it.

References

圊 V. V. Chistyakov.
On the superposition of the Borda and threshold preference orders for three-graded rankings. Procedia Computer Science 31 (2014) 1032-1035.

目 F. T. Aleskerov and V. V. Chistyakov.
The threshold decision making effectuated by the enumerating preference function. Int. J. of Information Technology and Decision Making 12(6) (2013) 1201-1222.

Thank you

