A Novel Shilling Attack Detection Method

ZEYNEP OZDEMIR

ANADOLU UNIVERSITY

COMPUTER ENGINEERING DEPARTMENT

Recommender Systems

- An impressive way of overcoming information overload problem
- Choose the most liked items among a huge number of possible items
- Save time
- Help to match users with right items
- Two way to provide recommendations: Collaborative Filtering, Content- based approaches

Collaborative Filtering Recommender Systems

- One of the recommendation techniques
- Produce highly accurate predictions
- Based on the assumption
 - ► Users having similar experiences on past items are tend to agree on new items.
- ► They are vulnerable to profile injection attacks/shilling attacks.

Shilling Attacks

- ▶ Increase/Decrease the popularity of target item.
- Construct fake profiles. Insert them into system's database.
- Effective impact on produced predictions
- ► Filler size and attack size used to design the attacks
- Categorized as push and nuke attacks according to their intends.

General form of an attack profile

Employed shilling attacks

- Shilling attacks we focused on:
 - ▶ Segment attack:
 - Designed for a group of users, Low-knowledge, Push attack
 - ▶ Bandwagon attack
 - ►Low-knowledge, Push attack, Popular items are chosen as selected items
 - ▶ Average attack
 - Filler items are chosen as randomly,

Importance of detection

- ▶ Bogus profiles make data quality worse and affect the accuracy of the predictions.
 - Detection of bogus profiles is extremely important for reliability of the system.
 - A novel shilling attack detection method for specific attacks based on bisecting k-means clustering approach.

A novel shilling attack detection method-Methodology

- Construct a binary decision tree via bisecting kmeans clustering algorithm
- ▶ Find intra-cluster correlation for each node
- Utilize intra-cluster correlation to detect bogus profiles.

Constructing BDT via bisecting k-means clustering algorithm

- ▶ The central server produces a BDT off-line
- K-means clustering is applied to group users into two distinct clusters at each level recursively.
- ▶ If any leaf node exceeds the neighbor number(N), the corresponding node is bisected.
- ▶ At most N user in each leaf node.

Detection of bogus profiles

- ► A novel approach: intra-cluster correlation as detection attribute
 - ► Calculate the intra-cluster correlation coefficient of each subcluster for an internal node.
 - Shilling attacks profiles resemble high intra-cluster correlation because of their certain generation strategy.
 - ▶ Traverse the BDT to find the shilled cluster.
 - ▶ Direct toward higher intra-cluster correlation.
 - ▶ Intra cluster correlation of two children nodes ,that consist of totaly or most of fake profiles, can not be diversely different intra-cluster correlation of parent node.

A novel shilling attack detection method-Experiments

- MovieLens Data
- Precision and Recall as evaluation metric
- Experiments according to varying ρ parameter, attack size and filler size values.

Table 1. Effects of varying ρ values on overall performance												
	Precision					Recall	Recall					
ρ	1	2	4	7	10	1	2	4	7	10		
Segment	0.955	0.933	0.875	0.850	0.863	0.950	0.955	0.965	0.952	0.967		
Bandwagon	0.574	0.577	0.521	0.469	0.396	0.371	0.572	0.815	0.942	0.988		
Average	0.746	0.743	0.749	0.751	0.701	0.622	0.619	0.623	0.628	0.638		

A novel shilling attack detection method-Experiments

Table 2. Effects of varying fillersize values on overall performance												
	Precision					Recall	Recall					
Fillersize	3	5	10	15	25	3	5	10	15	25		
Segment	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.984		
Bandwagon	0.904	0.897	0.929	0.984	0.985	0.922	0.914	0.945	1.000	0.999		
Average	0.521	0.916	0.992	0.990	0.988	0.498	0.800	0.826	0.877	0.949		

Table 3. Effects of varying attack size values on overall performance											
	Precision					Recall					
Fillersize	3	5	10	15	25	3	5	10	15	25	
Segment	0.622	0.980	0.854	1.000	1.000	0.620	0.984	0.853	1.000	0.982	
Bandwagon	0.053	0.085	0.070	0.947	0.985	0.970	0.973	0.352	0.987	0.999	
Average	0.161	0.898	0.964	0.982	0.988	0.127	0.765	0.873	0.916	0.951	

Summary & Future Work

- Our work is the first one that uses bisecting kmeans clustering as detection scheme.
- Very successful at detecting bogus profiles generated from specific attack models like segment, bandwagon and average attacks.
- We want to extend our work to detect shilling attacks in private environments