

An analysis of several novel frameworks and models in the consensus reaching process

Hengjie Zhang

Outline

Background: consensus reaching process

- **Model I:** consensus with minimum adjustments
- Model II: consensus based on consistency and consensus measures
- Model III: direct consensus framework
- Future research

Background: consensus reaching process

Fig. 1. A common consensus framework

Consensus with minimum adjustments

Motivation: How to minimize the adjustments?

Consensus with minimum adjustments

Minimizing the distance between the original and adjusted preferences

Minimizing the number of adjusted preference values

Minimizing the distance between the original and adjusted preferences

Basic model

$$\min_{\overline{o}_{k}} \sum_{k=1}^{m} |\overline{o}_{k} - o_{k}|$$

$$s.t. \begin{cases} \overline{o} = Ag(\overline{o}_{1}, \overline{o}_{2}, ..., \overline{o}_{m}) \\ |\overline{o}_{k} - \overline{o}| \leq \alpha, \ k = 1, 2, ..., m \end{cases}$$
(1)

[1] G.Q. Zhang, Y.C. Dong, Y.F. YF, H.Y. Li. Minimum-cost consensus models under aggregation operators. *IEEE Trans. Syst., Man, Cybern. A, Syst. Humans.*, 41 (2011) 1253-1261.

[2] B.W. Zhang, Y.C. Dong, Y.F. Xu. Maximum expert consensus models with linear cost function and aggregation operators. *Comput. Ind. Eng.*, 66 (2013) 147-157.

Minimizing the number of adjusted preference values

Basic model

$$\min \sum_{k=1}^{m} co_{k}$$

$$\begin{cases} \overline{o} = Ag(\overline{o}_{1}, \overline{o}_{2}, ..., \overline{o}_{m}) \\ \sum_{k=1}^{m} (|\overline{o}_{k} - \overline{o}|) \leq \alpha \\ co_{k} = \begin{cases} 1, \ o_{k} \neq \overline{o}_{k} \\ 0, \ o_{k} = \overline{o}_{k} \end{cases} \end{cases}$$

$$(2)$$

[1] B.W. Zhang, Y.C. Dong, Y.F. Xu. Multiple attribute consensus rules with minimum adjustments to support consensus reaching. Submitted to *Knowl.-Based Syst.*

Consensus with minimum adjustments

>Advantages

- Minimize adjustment amounts.
- Provide new references for experts to modify their preferences.

Consensus based on consistency and consensus measures

Motivation: How to preserve/improve individual consistency in consensus reaching process?

Consensus based on consistency and consensus measures

Iteration-based consensus model

(Take multiplicative preference relations as example)

> Optimization-based consensus model

(Take additive preference relations as example)

Iteration-based consensus model

Consistency and consensus measures

• The *consistency index* of A^k is defined by

$$\overline{CI}(A^{k}) = \frac{2}{(n-1)(n-2)} \sum_{i < j} (\log(a_{ij}^{k}) - \log(p_{i}^{k}) + \log(p_{j}^{k}))^{2}$$

•The *consensus index* of A^k is defined by

$$CI(A^{k}) = \frac{2}{(n-1)(n-2)} \sum_{i < j} (\log(a_{ij}^{k}) - \log(p_{i}^{c}) + \log(p_{j}^{c}))^{2}$$

Iteration-based consensus model

Feedback adjustment

When constructing $\overline{A}^{k} = [\overline{a}_{ij}^{k}]_{n \times n}$, we suggest that $\overline{a}_{ij}^{k} = (a_{ij}^{k})^{\theta} (p_{i}^{c} / p_{j}^{c})^{(1-\theta)}$, where $0 < \theta < 1$.

Iteration-based consensus model

Advantages

- The consistency level of multiplicative preference relations are improved.
- The consensus level is improved.
- The Pareto principle is satisfied.

[1] Y.C. Dong, G.Q. Zhang, W.C. Hong, Y.F. Xu. Consensus models for AHP group decision making under row geometric mean prioritization method. *Deci. Support Syst.* 49 (2010) 281-289.

Optimization-based consensus model

Basic model

$$\min_{\overline{F}^{k}} \sum_{k=1}^{m} d(F^{k}, \overline{F}^{k})$$

$$s.t. \begin{cases} \overline{CI}(\overline{F}^{k}) \leq \beta, \quad k = 1, 2, ..., m \\ CI\{\overline{F}^{1}, ..., \overline{F}^{m}\} \leq \alpha \end{cases}$$
(3)

[1] G.Q. Zhang, Y.C. Dong, Y.F. Xu. Linear optimization modeling of consistency issues in group decision making based on fuzzy preference relations. *Expert Syst. Appl*. 39 (2012) 2415-2420.

Optimization-based consensus model

Advantages

- The consistency and consensus are improved in one linear programming model.
- Individuals' original preferences are preserved as much as possible.

Direct consensus framework

Motivation: How to obtain the consensus solution?

Selection process

Fig. 2. Direct consensus framework

Consensus process

Direct consensus framework

> Advantages

- The internal inconsistency issue is avoided.
- The Pareto principle is satisfied.

[1] Y.C. Dong, H.J. Zhang. Multiperson decision making with different preference representation structures: A direct consensus framework and its properties. *Knowl.-Based Syst.* 58 (2014) 45-57.

Future research

Incorporate the behaviours of experts into the consensus reaching process.

Investigate the consensus reaching process in dynamic situations.

Design a general comparison framework to compare different consensus models.

Thank you!

Any questions?