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Abstract 
 Data mining is a one of the growing sciences in the world that can play a competitive advantages 
rule in many firms. Data mining algorithms based on their functions can be divided in four 
categories; 

 

o Classification 

o Feature selection 

o Assassination rules 

o Clustering 
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Abstract 
 

o Feature selection algorithms mostly used for obtaining more precise and strong 

machine learning algorithms along with reducing the computation time. 

 

o Data Envelopment Analysis which is a useful technique for determining the efficiency 

of decision-making units. 

 

o Entropy method which its function is weighting the criteria to selecting the appropriate 

features. 
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Problem Definition 
 Classification methods are widespread and strong tools to dealing with a real 
problems such as firm bankruptcy prediction, credit card assessment, intrusion 
detection, fraud detection and ets.  

 Totally, a classification machine contains the following four fundamental components: 

 (1) a set of attribute or characteristic values  

 (2) a sample training data set 

 (3) an acceptance domain 

 (4) a classification function. 

 The accuracy of classification and predictive power are two main issues related to classification 
methods. 
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Problem Definition 
 Selecting an appropriate set of features to represent the main information of 
original datasets is an important factor that influences the accuracy of 
classification methods. 

  

 The goal of this paper is to providing a novel feature selection 
method based on Data envelopment analysis and Entropy to gain 

more classification accuracy.  
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Feature selection 
 

 

o Enhancing the classification accuracy and predictability ability 

o Increasing the training process speed 

oDecreasing the storage demands 

oBetter understanding and interpretability of a domain. 
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Feature selection 
 Different kind of methods have been proposed feature reduction. Totally they can be divided in 
two main groups: 

  

o feature extraction 

o feature selection. 

  

 Although a number of comprehensive studies have been done on feature selection and 
classification methods to select the best subset of features to improve the accuracy of 
classification methods, this study focus on applying new model based on MCDM methods.  
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Shannon’s entropy 
 Shannon’s entropy is a well-known method for calculating the weights for multiple criteria 
decision making problem.  

 Step 1: Normalize the decision matrix.  

  

  

 By normalizing the decision matrix we make a free unit matrix. 
Step 2: By using formula 2 calculating the entropy:  
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Shannon’s entropy 
 Step 3: Calculate the degree of deviation of each criteria from its entropy’s value: 

  

  

 Step 3: Calculate the degree of importance or weight of each criteria: 

  

  

  

 The entropy method is based on the variance of values in each criterion, so we can conclude if 
criteria have more deviation, then the value of its entropy would be increased and it shows that 
this criterion is more important for classification. 
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Data Envelopment Analysis  
 DEA use to calculate the efficiency of Decision-making units (DMUs). This method is a non-
parametric based on linear programming and was first proposed by Charnes, Cooper & Rhodes 
(1978). 

 The basic DEA model known as CCR model: 
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Data Envelopment Analysis  
 There are two different methods to solve this problem, one can be output maximization or input 
minimization. Here, we choose the first method by placing denominator equal to 1, so in the 
following an output maximization CCR model presented: 

03/06/2014 ITQM2014   12 

1

1

1 1

: 1

1,2,..., 1,2,..., 1,2,...,

,

s

P r rp

r

m

i ip

i

s m

r rj i ij

r i

r i

E Max u y

st v x

u y v x o

i m j n r s

u v o





 





 

  







 



Experimental Evaluation 
  

 Table 1: Characteristics of selected datasets 
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Row Name 
Number 

of attributes 

Numbers 

of Instances 

Numbers 

of Classes 

Attribute  

Characteristics 

1 Breast Cancer Wisconsin (Diagnostic) 32 569 2 Integer 
2 Statlog (Landsat Satellite) Data Set 36 6435 6 Integer 

3 Statlog (Vehicle Silhouettes) Data Set 18 946 4 Integer 

 



Our proposed model 
 In the following steps we show how our model works: 

 Step1: compute the entropy value of each attribute in different classes by (a) at first separating the 
datasets according to their classes’ type, (b) then calculating the Entropy of each attribute. 

 Step 2: considering each attribute as a Decision-Making Units (DMUs) 

 Step 3: placing the input of DMUs equal to 1. 

 Step 4: placing the output of DMUs equal to entropy value gain form step 1. 

 Step 5: compute the efficiency of each attribute. 

 Step 6: selecting the efficient attribute.  

 Step 7: applying other feature selection algorithms on the same datasets for selecting the features. 

 Step 8: comparing the result of our models with the result of step 7. 
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The selected features 
                         Table 2: The selected features from 1st dataset by different features selection algorithms and our proposed model 

Feature Selection 

Method 
Selected Features 

Number of 

selected features 

CfS Subseteval 2,7,8,14,19,21,23,24,25,27,28 11 

Consistency subset eval 2,11,13,21,22,27,28,29 8 

Filtered Subset eval 2,7,8,14,21,23,24,27,28 9 

Our Proposed Model 7,8,11,13,14,16,17,20,26, 27 10 

                         Table 3: The selected features from 2nd dataset by different features selection algorithms and our proposed model 

Feature Selection 

Method 
Selected Features 

Number of 

selected eatures 

CfS Subseteval 1,4,5,6,9,10,12,13,14,16,17,18,20,21,22,24,25,26,28,29,30,33,36 23 

Consistency subset eval 1,2,7,10,11,17,18,24,28,29,31,33 12 

Filtered Subset eval 1,4,5,6,9,10,12,13,14,16,17,18,20,21,22,24,25,26,28,29,30,33,36 23 

Our Proposed Model 2,3,4,6,7,8,10,11,12,14,16,18,22,24,26,28,30,32,34,35,36 21 

                         Table 4: The selected features from 3th dataset by different features selection algorithms and our proposed model 

Feature Selection 

Method 
Selected Features 

Number of 

selected features 

CfS Subseteval 4,5,6,7,8,9,11,12,14,15,16 11 

Consistency subset eval 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 18 

Filtered Subset eval 4,5,6,7,8,9,11,12,14,15,16 11 

Our Proposed Model 3,4,6,7,8,11,12,13,15,16 10 
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Experimental Evaluation 
 Furthermore, we made the new datasets based on the selected features and then try to classify 
these new datasets by three classifications algorithms in SPSS clementine software and compare 
their accuracy. We used the 75% of each dataset as training dataset and the rest as testing 
dataset. The result showed in table 5 to 7. 
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                Table 5: The accuracy of classification algorithms based on the selected feature for Breast Cancer Wisconsin data set 

 The accuracy of classification algorithms  

Feature Selection Method SVM C5.0 Logistic Regression average 

CfS Subseteval 87.84 92.57 95.95 92.12 

Consistency subset eval 93.24 92.57 98.65 94.82 

Filtered Subset eval 87.84 91.22 96.62 91.89 

Our Proposed Model 89.86 93.92 95.95 93.24 

 



Experimental Evaluation 
Table 6: The accuracy of classification algorithms based on the selected feature for Landsat Satellite data set 

 The accuracy of classification algorithms  

Feature Selection Method SVM C5.0 Logistic Regression Average 

CfS Subseteval 86.84 85.42 84.98 85.74 

Consistency subset eval 87.10 85.42 84.89 85.80 

Filtered Subset eval 86.84 85.42 84.98 85.74 

Our Proposed Model 88.96 86.04 85.42 86.80 

 

 
                  Table 7: The accuracy of classification algorithms based on the selected feature for Vehicle Silhouettes Data Set 

 The accuracy of classification algorithms  

Feature Selection Method SVM C5.0 Logistic Regression Average 

CfS Subseteval 58.74 66.50 67.96 64.40 

Consistency subset eval 69.42 68.45 74.27 70.71 

Filtered Subset eval 58.74 66.50 67.96 64.40 

Our Proposed Model 61.17 73.3 64.56 66.34 
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Conclusion and future work 
 As shown in the last sector by applying Data Envelopment Analysis and Entropy method for 
selecting the features, the result is comparable with the other method and in some of the cases 
it has a better result. 

  

 According to the acquired result we suggest other researchers to use different MCDM methods 
such as TOPSIS and SAW integrated with other methods of weighting such as Expected Value 
method for selecting the features. 

  

 Furthermore, our proposed model can be used for ranking the features instead of selecting 
them.  
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