Determination of Transmission Capacity For a Two-Node Market

Daylova E.A. Vasin A.A.

Lomonosov Moscow State University

ITQM 2014

Daylova E.A. Vasin A.A.

Lomonosov Moscow State Universit

Model of a two-node market

- A_i finite set of producers at the local market i, i = 1, 2
- $E^a(q)$ cost function of producer $a, a \in A_i$
- $d_i(p)$ demand function at the local market i, i = 1, 2
- k loss coefficient
- C transmission capacity

Strategy of producer *a* is a non-decreasing supply function $r^{a}(p)$ that determines the output volume depending on the price *p*.

イロト 不得 とくほと くほとう ほ

Clearing prices \overline{p}_i for isolated markets are determined by the equations $\sum_{a \in A_i} r^a(\overline{p}_i) = d_i(\overline{p}_i)$, i = 1, 2. If

$$1-k \leq \overline{p}_2/\overline{p}_1 \leq (1-k)^{-1}, \tag{1}$$

then there is no transmission from one market to the other and the nodal prices are equal to the prices of isolated markets. Otherwise let $\overline{p}_2/\overline{p}_1 > (1-k)^{-1}$. In this case, the network administrator determines the volume of the good v that will be transmitted from the first market to the second market.

Nodal prices $p_1(v)$ and $p_2(v)$ and the flow v are determined by the system:

$$\left\{\begin{array}{l} \sum_{a \in A_1} r^a(p_1) = d_1(p_1) + v \\ \sum_{a \in A_2} r^a(p_2) = d_2(p_2) - (1 - k)v \\ \left[\left\{ \begin{array}{l} p_1(v) = (1 - k)p_2(v) \\ v < C \\ p_1(v) \le (1 - k)p_2(v) \\ v = C \end{array} \right] \right.\right.$$

Daylova E.A. Vasin A.A.

_omonosov Moscow State Universit

(日) (部) (E) (E) (E)

Two-node market under perfect competition

The optimal strategy under perfect competition:

$$s^a(p) \stackrel{\mathrm{def}}{=} \operatorname{Argmax}_{q^a}(q^a p - E^a(q^a)), \ s_i(p) \stackrel{\mathrm{def}}{=} \sum_{a \in A_i} s^a(p), \ i = 1, 2.$$

 $\tilde{p}_i(C)$, i = 1, 2 – nodal prices corresponding to Walrasian supply functions depending on the transmission capacity.

Prices $\widetilde{p}_i(0)$ meet the equations $d_i(\widetilde{p}_i) \in s_i(\widetilde{p}_i)$, i = 1, 2.

If there is a flow from the first market to the second market, the prices $\tilde{p_1}(C)$ is $\tilde{p_2}(C)$ satisfy the following conditions:

$$\begin{cases} s_1(\widetilde{p_1}) = d_1(\widetilde{p_1}) + v \\ s_2(\widetilde{p_2}) = d_2(\widetilde{p_2}) - (1-k)v \\ \begin{cases} \widetilde{p_1} = (1-k)\widetilde{p_2} \\ v < C \\ \\ \widetilde{p_1} \le (1-k)\widetilde{p_2} \\ v = C \end{cases}$$
(2)

Daylova E.A. Vasin A.A.

_omonosov Moscow State Universit

Equilibrium for a two-node competitive market

Let functions $\tilde{p_1}^0(v)$ and $\tilde{p_2}^0(v)$ be implicitly determined by the first and the second equations of the system (2) respectively. Assume that $\tilde{p_1}^0(0) < (1-k)\tilde{p_2}^0(0)$.

Theorem 1

There exists a value of the transmission capacity \widehat{C} determined by the condition $\widetilde{p_1}^0(\widehat{C}) = (1-k)\widetilde{p_2}^0(\widehat{C})$ such that if $C < \widehat{C}$, then at the equilibrium

$$v = C, \quad \widetilde{p}_i(C) = \widetilde{p}_i^{0}(C), \quad i = 1, 2,$$
 (3)

$$\widetilde{p}_1(C) < (1-k)\widetilde{p}_2(C). \tag{4}$$

If $C > \widehat{C}$, then

$$v=\widehat{C}< C, \quad \widetilde{p_i}(C)=\widetilde{p_i}^0(\widehat{C}), \quad i=1,2.$$

Daylova E.A. Vasin A.A.

Determination of Transmission Capacity For a Two-Node Market

(5)

$$N(C) = \mathrm{P}_1(C) + \mathrm{P}_2(C) + \mathrm{S}_1(C) + \mathrm{S}_2(C) + \mathrm{T}(C), \mathrm{where}$$

system.

Daylova E.A. Vasin A.A.

Lomonosov Moscow State University

Producers' profit and consumer surplus

Daylova E.A. Vasin A.A.

Lomonosov Moscow State Universit

Total welfare W(C)

The costs of the transmission line construction:

$$B(C)=egin{cases} 0, & ext{if } C=0,\ b_f+b_v(Q), & ext{if } C>0, \end{cases}$$

where $b_v(C)$ is a convex and increasing function that determines variable costs, $b_v(0) = 0$; b_f is constant costs. Taking into account the construction costs, the total welfare is W(C) = N(C) - B(C).

Daylova E.A. Vasin A.A.

3

Optimal transmission capacity

Theorem 2

Function N(C) is concave and increases in C if $C \leq \widehat{C}$. In addition, $N'(C) = (1-k)\widetilde{p_2}(C) - \widetilde{p_1}(C)$.

Theorem 3

The optimal transmission capacity C^* equals zero if $(1-k)\widetilde{p_2}(0) - \widetilde{p_1}(0) \le b'_v(0)$. If this inequality does not hold, the value C^{*L} corresponding to a local maximum is determined by the equation $(1-k)\widetilde{p_2}(C^{*L}) - \widetilde{p_1}(C^{*L}) = b'_v(C^{*L})$ and satisfies $C^{*L} < \widehat{C}$. If $W(C^{*L}) > W(0)$ then $C^* = C^{*L}$. Otherwise $C^* = 0$.

Daylova E.A. Vasin A.A.

The flow of good between markets affects the benefit of transmission system, consumer surplus and producers' profit as follows:

 $\begin{array}{ll} \text{The first market:} & \Delta \mathrm{P}_1 > 0, \ \Delta \mathrm{S}_1 < 0. \\ \text{The second market:} & \Delta \mathrm{P}_2 < 0, \ \Delta \mathrm{S}_2 > 0. \\ \text{Profit of the network system:} & \widetilde{\rho_2}(C^*)(1-k)C^* - \widetilde{\rho_1}(C^*)C^*. \end{array}$

Daylova E.A. Vasin A.A.

Lomonosov Moscow State University

・ロト ・ ア・ ・ ヨト ・ モー・

10

Cournot competition for a two-node market

A strategy of producer *a* is a production volume $q^a \in [0, V^a]$. Let $\overrightarrow{q_i} = (q^a, a \in A_i)$ be a strategy profile for the node i = 1, 2. For the separated markets, the prices p_i^{*0} , i = 1, 2, are $p_i^{*0}(\overrightarrow{q_i}) = d_i^{-1}(\sum_{a \in A_i} q^a)$, i = 1, 2. Nodal prices $p_1(v)$ and $p_2(v)$ and the flow *v* are determined by the system:

$$\begin{cases} \sum_{a \in A_1} q^a = d_1(p_1) + v \\ \sum_{a \in A_2} q^a = d_2(p_2) - (1 - k)v \\ \begin{bmatrix} p_1 = (1 - k)p_2 \\ v < C \\ p_1 \le (1 - k)p_2 \\ v = C \end{bmatrix}$$
(6)

Daylova E.A. Vasin A.A.

Lomonosov Moscow State Universit

11

Type A equilibrium

Transmission of the good is unprofitable since the prices for the separated markets meet conditions $\lambda^{-1} < p_2^*/p_1^* < \lambda$, where $\lambda = (1 - k)^{-1}$.

The first order conditions (FOCs) for such equilibrium are:

where $E^{a'}(q) = [E_{-}^{a'}(q), E_{+}^{a'}(q)]$ at the jump points of the marginal cost function.

The equilibrium prices p_i^* are determined by the equations

$$\sum_{a \in A_i} s_{iC}^a(p_i^*) = d_i(p_i^*), \quad i = 1, 2$$

Daylova E.A. Vasin A.A.

Lomonosov Moscow State Universit

イロト 不得 とくほと くほとう ほ

Type B_{1-2} equilibrium (1)

At the type B_{12} equilibrium, $v \in (0, C)$ and $\lambda p_1^* = p_2^*$. Under small variations of the price, the demand at the first market is

$$d_1(p_1) + \lambda(d_2(\lambda p_1) - \sum_{a \in A_2} q^a).$$

Thus the price p_1^b meets the equation

$$\sum_{a\in \mathcal{A}_1}q^a=d_1(p_1^b)+\lambda(d_2(\lambda p_1^b)-\sum_{a\in \mathcal{A}_2}q^a).$$

The FOCs for this type of equilibrium are: for every $a \in A_1$

$$\begin{aligned} q^{a*} &\in (p_1^{*b} - E^{a'}(q^{a*})) |d_1'(p_1^{*b}) + \lambda^2 d_2'(\lambda p_1^{*b})| \text{ if } E^{a'}(0) < p_1^{*b}, \\ q^{a*} &= 0 \text{ if } E^{a'}(0) \ge p_1^{*b}. \end{aligned}$$

Daylova E.A. Vasin A.A.

Lomonosov Moscow State Universit

Type B_{1-2} equilibrium (2)

The demand for producers at the second market is

$$d_2(\lambda p_1)+1/\lambda(d_1(p_1)-\sum_{a\in A_1}q^a),$$

and the FOCs for the Nash equilibrium are

$$q^{a*} \in (\lambda p_1^{*b} - E^{a'}(q^{a*}))|d_2'(\lambda p_1^{*b}) + d_1'(p_1^{*b})/\lambda^2|$$
 if $E^{a'}(0) < p_2^{*b}$,
 $q^{a*} = 0$ if $E^{a'}(0) \ge p_2^{*b}$.

Daylova E.A. Vasin A.A.

Lomonosov Moscow State University

Type C_{1-2} equilibrium

At the c_{12} type equilibrium, v = C and $\lambda p_1^* < p_2^*$. The FOCs :

$$egin{aligned} q^{a*} &\in (p_i^{*c} - E^{a'}(q^{a*})) |d_i'(p_i^{*c})| & ext{if } E^{a'}(0) < p_i^{*c}, i = 1,2; \ q^{a*} &= 0 & ext{if } E^{a'}(0) \geq p_i^{*c}. \end{aligned}$$

The total supply at each market balances the demand:

$$\sum_{a \in A_1} q^{a*} = d_1(p_1^{*c}) + C,$$

 $\sum_{a \in A_2} q^{a*} = d_2(p_2^{*c}) - \lambda^{-1}C.$

Daylova E.A. Vasin A.A.

▲□▶ ▲圖▶ ▲불▶ ▲불▶ 불 외역@ Lonnonosov Moscov State University

Type D_{1-2} equilibrium

At the type d_{12} equilibrium, v = C and $\lambda p_1^* = p_2^*$. The FOCs for producers at the first node are

 $(p_1^*-E_-^{a'}(q^{a*}))|d_1'(p_1^*)+\lambda^2 d_2'(\lambda p_1^*)|\geq q^{a*}\geq (p_1^*-E_+^{a'}(q^{a*}))|d_1'(p_1^*)|.$

The FOCs for the second node are

$$(\lambda p_1^* - E_-^{a'}(q^{a*}))|d_2'(\lambda p_1^*)| \ge q^{a*} \ge (\lambda p_1^* - E_+^{a'}(q^{a*}))|d_2'(\lambda p_1^*) + d_1'(p_1^*)/\lambda^2|.$$

The total supply at each market balances the demand:

$$\sum_{a \in A_1} q^{a*} = d_1(p_1^{*c}) + C,$$
$$\sum_{a \in A_2} q^{a*} = d_2(p_2^{*c}) - \lambda^{-1}C.$$

Daylova E.A. Vasin A.A.

Lomonosov Moscow State University

Cournot equilibrium depending on the transmission capacity C (1)

17

■ Cournot prices p_i^{*0}, i = 1, 2 for isolated markets are determined by the equations: s_i(p_i^{*0}) = d_i(p_i^{*0}), i = 1, 2.

•
$$\Delta_{ij}^1(\lambda, p) \stackrel{\text{def}}{=} s_{1Ci-j}(\lambda, p) - d_1(p)$$

 $\Delta_{ij}^2(\lambda, p) \stackrel{\text{def}}{=} s_{2Ci-j}(\lambda, p) - d_2(p).$

Consider the case $\lambda = 1$:

• Let prices \overline{p}_1 и \overline{p}_2 be determined by the conditions: $\Delta^i(\overline{p}_i) = 0, i = 1, 2$

Daylova E.A. Vasin A.A.

(日) (周) (日) (日) (日)

Cournot equilibrium depending on the transmission capacity C (2)

18

Theorem 4

Let $d_i(p) > 0$ and $d'_i(p)$ be non-increasing if $p \in (0, M_i)$; $d_i(p) = 0$ if $p \ge M_i$, i = 1, 2, and p_1^{*0} , p_2^{*0} , \overline{p}_1 , \overline{p}_2 , M_1 , M_2 meet conditions $p_1^{*0} < p_2^{*0} < M_2 < M_1$, $\overline{p}_1 < \overline{p}_2$. Then for any C > 0, there exists at most one equilibrium for λ close enough to 1. Moreover, there is a value $\underline{C} \in (0, \overline{C})$, where $\overline{C} = s_{1C1-2}(p_1^{*b}) - d_1(p_1^{*b})$, such that if $C \in (0, \underline{C})$ then there exists a C_{1-2} equilibrium; if $C > \overline{C}$, there exists a B_{1-2} equilibrium; if $C \in (\underline{C}, \overline{C})$, only D_{1-2} type equilibrium is possible.

Daylova E.A. Vasin A.A.

Lomonosov Moscow State University

Properties of the total welfare function

Theorem 5

Let $d_i(p) = max\{\widehat{D_i} - d_ip, 0\}$, i = 1, 2 and marginal costs be piecewise constant. Then for $C < \underline{C}$ (type C equilibrium) there exist intervals $C_j < C < C_{j+1}$ such that the total welfare function TW(C) is concave in each of these intervals.

Theorem 6

If $C > \overline{C}$ (type B equilibrium), the total welfare function TW(C) decreases. The optimal transmission capacity $C^* \leq \overline{C}$.

Properties of the total welfare function

20

Theorem 7

Let $d_i(p) = max\{\widehat{D_i} - d_ip, 0\}$, i = 1, 2 and marginal costs be piecewise constant. Then for $C \in (\underline{C}, \overline{C})$ (type D equilibrium) under perfect competition at the second market, there exist intervals $z_j < C < z_{j+1}$ such that the total welfare function TW(C) is concave in each of these intervals.

Daylova E.A. Vasin A.A.

Lomonosov Moscow State University

References

- Hogan W. *Competitive electricity market design: a wholesale primer.* Tech. Rep. Harvard Electricity Policy Group; 1998.
- Davidson MR, Dogadushkina YV, Kreines EM, Novikova NM, Seleznev AV, Udaltsov YA, Shiryaeva LV. Mathematical model of power system management in conditions of a competitive wholesale electric power (capacity) market in Russia. *Journal of Computer and Systems Sciences International* 2009;**48**:243-253.
- Vasin AA, Vasina PA. Electricity markets analysis and design. Working Paper 2006/053. Moscow New Economic School; 2006.

Vasin AA, Vasina PA, Ruleva TY. On organization of markets of homogeneous goods. *Journal of Computer and Systems Sciences International* 2007;**46**:93-106.

Vasin A, Sosina Y, Weber GW. Evaluation of market power in local and two-node markets. In: Mazalov VV, editor. *International Workshop Networking Games and Management* NGM-2012.

Daylova E.A. Vasin A.A.

omonosov Moscow State Universit