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Model of a two-node market 1

Ai – finite set of producers at the local market i , i = 1, 2

E a(q) – cost function of producer a, a ∈ Ai

di (p) – demand function at the local market i , i = 1, 2

k – loss coefficient
C – transmission capacity

Strategy of producer a is a non-decreasing supply function ra(p)
that determines the output volume depending on the price p.
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Model of a two-node market 2

Clearing prices pi for isolated markets are determined by the
equations

∑
a∈Ai

ra(pi ) = di (pi ), i = 1, 2.
If

1− k ≤ p2/p1 ≤ (1− k)−1, (1)

then there is no transmission from one market to the other and the
nodal prices are equal to the prices of isolated markets.
Otherwise let p2/p1 > (1− k)−1. In this case, the network
administrator determines the volume of the good v that will be
transmitted from the first market to the second market.
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Nodal prices and the flow 3

Nodal prices p1(v) and p2(v) and the flow v are determined by the
system: 

∑
a∈A1

ra(p1) = d1(p1) + v∑
a∈A2

ra(p2) = d2(p2)− (1− k)v
{

p1(v) = (1− k)p2(v)
v < C{
p1(v) ≤ (1− k)p2(v)
v = C
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Two-node market under perfect competition 4

The optimal strategy under perfect competition:
sa(p)

def
= Argmax

qa
(qap − E a(qa)), si (p)

def
=
∑
a∈Ai

sa(p), i = 1, 2.

p̃i (C ), i = 1, 2 – nodal prices corresponding to Walrasian supply
functions depending on the transmission capacity.
Prices p̃i (0) meet the equations di (p̃i ) ∈ si (p̃i ), i = 1, 2.
If there is a flow from the first market to the second market, the
prices p̃1(C ) и p̃2(C ) satisfy the following conditions:

s1(p̃1) = d1(p̃1) + v
s2(p̃2) = d2(p̃2)− (1− k)v
{

p̃1 = (1− k)p̃2
v < C{
p̃1 ≤ (1− k)p̃2
v = C

(2)
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Equilibrium for a two-node competitive market 5

Let functions p̃10(v) and p̃2
0(v) be implicitly determined by the

first and the second equations of the system (2) respectively.
Assume that p̃10(0) < (1− k)p̃2

0(0).

Theorem 1

There exists a value of the transmission capacity Ĉ determined by
the condition p̃1

0(Ĉ ) = (1− k)p̃2
0(Ĉ ) such that if C < Ĉ , then at

the equilibrium

v = C , p̃i (C ) = p̃i
0(C ), i = 1, 2, (3)

p̃1(C ) < (1− k)p̃2(C ). (4)

If C > Ĉ , then

v = Ĉ < C , p̃i (C ) = p̃i
0(Ĉ ), i = 1, 2. (5)
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Welfare maximization problem 6

N(C ) = P1(C ) + P2(C ) + S1(C ) + S2(C ) + T(C ),where

Pi (C ) =
∑

a∈Ai

(
p̃i (C )sa(p̃i (C ))− E a(sa(p̃i (C )))

)
=

=
∫ p̃i (C)
0 si (p)dp – producers’ profit at market i ,

Si (C ) =

∞∫
p̃i (C)

di (p)dp – consumer surplus at market i ,

T(C ) = p̃2(C )(1− k)C − p̃1(C )C – the benefit of the network
system.
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Producers’ profit and consumer surplus 7

D1(p)+Q

D1(p)

D2(p)

D2(p)−(1−k)Q

S2W (p)S1W (p)

p1(0) p1(Q) p2(0)p2(Q) pp

а б

~~~ ~
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Total welfare W (C ) 8

The costs of the transmission line construction:

B(C ) =

{
0, if C = 0,
bf + bv (Q), if C > 0,

where bv (C ) is a convex and increasing function that determines
variable costs, bv (0) = 0 ; bf is constant costs.
Taking into account the construction costs, the total welfare is
W (C ) = N(C )− B(C ).
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Optimal transmission capacity 9

Theorem 2

Function N(C ) is concave and increases in C if C ≤ Ĉ . In addition,
N

′
(C ) = (1− k)p̃2(C )− p̃1(C ).

Theorem 3

The optimal transmission capacity C ∗ equals zero if
(1− k)p̃2(0)− p̃1(0) ≤ b′v (0). If this inequality does not hold, the
value C ∗L corresponding to a local maximum is determined by the
equation (1− k)p̃2(C ∗L)− p̃1(C ∗L) = b′v (C ∗L) and satisfies
C ∗L < Ĉ . If W (C ∗L) >W (0) then C ∗ = C ∗L. Otherwise C ∗ = 0.
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Who wins and who loses from the connection? 10

The flow of good between markets affects the benefit of
transmission system, consumer surplus and producers’ profit as
follows:

The first market: ∆P1 > 0, ∆S1 < 0.
The second market: ∆P2 < 0, ∆S2 > 0.
Profit of the network system: p̃2(C ∗)(1− k)C ∗ − p̃1(C ∗)C ∗.
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Cournot competition for a two-node market 11

A strategy of producer a is a production volume qa ∈ [0,V a]. Let
−→qi = (qa, a ∈ Ai ) be a strategy profile for the node i = 1, 2. For
the separated markets, the prices p∗0i , i = 1, 2, are
p∗0i (−→qi ) = d−1i (

∑
a∈Ai

qa), i = 1, 2.
Nodal prices p1(v) and p2(v) and the flow v are determined by the
system: 

∑
a∈A1

qa = d1(p1) + v∑
a∈A2

qa = d2(p2)− (1− k)v
{

p1 = (1− k)p2
v < C{
p1 ≤ (1− k)p2
v = C

(6)
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Type A equilibrium 12

Transmission of the good is unprofitable since the prices for the
separated markets meet conditions λ−1 < p∗2/p

∗
1 < λ, where

λ = (1− k)−1.
The first order conditions (FOCs) for such equilibrium are:

qa∗ ∈ (p∗i − E a′(qa∗))|d ′
i (p
∗
i )| , for every a ∈ Ai

such that E a′(0) < p∗i , i = 1, 2,

qa∗ = 0 if E a′(0) ≥ p∗i ,

where E a′(q) = [E a′
− (q),E a′

+ (q)] at the jump points of the marginal
cost function.
The equilibrium prices p∗i are determined by the equations∑

a∈Ai

saiC (p∗i ) = di (p
∗
i ), i = 1, 2

.
Равновесные цены p∗i определяются из баланса спроса и
предложения:

∑
a∈Ai

va = Di (p
∗
i ), i = 1, 2.
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Type B1−2 equilibrium (1) 13

At the type B12 equilibrium, v ∈ (0,C ) and λp∗1 = p∗2 .
Under small variations of the price, the demand at the first market
is

d1(p1) + λ(d2(λp1)−
∑
a∈A2

qa).

Thus the price pb1 meets the equation∑
a∈A1

qa = d1(pb1 ) + λ(d2(λpb1 )−
∑
a∈A2

qa).

The FOCs for this type of equilibrium are: for every a ∈ A1

qa∗ ∈ (p∗b1 − E a′(qa∗))|d ′
1(p∗b1 ) + λ2d

′
2(λp∗b1 )| if E a′(0) < p∗b1 ,

qa∗ = 0 if E a′(0) ≥ p∗b1 .
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Type B1−2 equilibrium (2) 14

The demand for producers at the second market is

d2(λp1) + 1/λ(d1(p1)−
∑
a∈A1

qa),

and the FOCs for the Nash equilibrium are

qa∗ ∈ (λp∗b1 − E a′(qa∗))|d2′(λp∗b1 ) + d1
′(p∗b1 )/λ2| if E a′(0) < p∗b2 ,

qa∗ = 0 if E a′(0) ≥ p∗b2 .
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Type C1−2 equilibrium 15

At the c12 type equilibrium, v = C and λp∗1 < p∗2 .
The FOCs :

qa∗ ∈ (p∗ci − E a′(qa∗))|di ′(p∗ci )| if E a′(0) < p∗ci , i = 1, 2;

qa∗ = 0 if E a′(0) ≥ p∗ci .

The total supply at each market balances the demand:∑
a∈A1

qa∗ = d1(p∗c1 ) + C ,

∑
a∈A2

qa∗ = d2(p∗c2 )− λ−1C .
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Type D1−2 equilibrium 16

At the type d12 equilibrium, v = C and λp∗1 = p∗2 . The FOCs for
producers at the first node are

(p∗1−E a′
− (qa∗))|d ′1(p∗1)+λ2d ′2(λp∗1)| ≥ qa∗ ≥ (p∗1−E a′

+ (qa∗))|d ′1(p∗1)|.

The FOCs for the second node are

(λp∗1−E a′
− (qa∗))|d ′2(λp∗1)| ≥ qa∗ ≥ (λp∗1−E a′

+ (qa∗))|d ′2(λp∗1)+d ′1(p∗1)/λ2|.

The total supply at each market balances the demand:∑
a∈A1

qa∗ = d1(p∗c1 ) + C ,

∑
a∈A2

qa∗ = d2(p∗c2 )− λ−1C .
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Cournot equilibrium depending on the transmission
capacity C (1) 17

Cournot prices p∗0i , i = 1, 2 for isolated markets are
determined by the equations: siC (p∗0i ) = di (p

∗0
i ), i = 1, 2.

∆1
ij(λ, p)

def
= s1Ci−j(λ, p)− d1(p)

∆2
ij(λ, p)

def
= s2Ci−j(λ, p)− d2(p).

Consider the case λ = 1:
∆1

ij(1, p) = ∆1
ji (1, p)

def
= ∆1(p);

∆2
ij(1, p) = ∆2

ji (1, p)
def
= ∆2(p)

Let prices p1 и p2 be determined by the conditions:
∆i (pi ) = 0, i = 1, 2
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Cournot equilibrium depending on the transmission
capacity C (2) 18

Theorem 4

Let di (p) > 0 and d ′i (p) be non-increasing if p ∈ (0,Mi ); di (p) = 0
if p ≥ Mi , i = 1, 2, and p∗01 , p∗02 , p1, p2, M1, M2 meet conditions
p∗01 < p∗02 < M2 < M1, p1 < p2. Then for any C > 0, there exists
at most one equilibrium for λ close enough to 1.
Moreover, there is a value C ∈ (0,C ), where
C = s1C1−2(p∗b1 )− d1(p∗b1 ), such that if C ∈ (0,C ) then there
exists a C1−2 equilibrium; if C > C , there exists a B1−2
equilibrium; if C ∈ (C ,C ), only D1−2 type equilibrium is possible.
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Properties of the total welfare function 19

Theorem 5

Let di (p) = max{D̂i − dip, 0}, i = 1, 2 and marginal costs be
piecewise constant. Then for C < C (type C equilibrium) there
exist intervals Cj < C < Cj+1 such that the total welfare function
TW (C ) is concave in each of these intervals.

Theorem 6

If C > C (type B equilibrium), the total welfare function TW (C )
decreases. The optimal transmission capacity C ∗ ≤ C .
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Properties of the total welfare function 20

Theorem 7

Let di (p) = max{D̂i − dip, 0}, i = 1, 2 and marginal costs be
piecewise constant. Then for C ∈ (C ,C ) (type D equilibrium)
under perfect competition at the second market, there exist
intervals zj < C < zj+1 such that the total welfare function
TW (C ) is concave in each of these intervals.
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