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Data preparation and transformation of the original problem

Linear programming problem will be considered as follows:

¢ .fcl. — min, (1)

where %, >0, j=1,..,n are the variables of the original problem, ¢,, j=1,..,n are

the coefficients of the linear form, a,, i=1,...,m, j=1,...,n are the coefficients of the

[j’
constraints and 151,, i=1,..,m are the right-hand sides of the constraints. It is assumed

that (1) has a solution. The corresponding dual problem is

Zl;/{ — max, 2)

where il., i=1,.,m are the values of the original dual problem. Introducing
additional non-negative variables il. >0, i=m+1,...,n, we transform the problem (2)
to the canonical form:

m
> b4, — max, 3)

The coefficients of the objective function, the coefficients of the constraints and
the right-hand sides of constraints become positive as a result of equivalent
transformations:

Z A, — max, @)
i=1
m+n ~
ayxlZ =c,, ¢;>0, a;20,i=1...m+n, j=1..,n,
i=1
A20, >0, i=1,.,m+n

Further, the constants and the variables are replaced with some new ones as
follows: divide the coefficients, the constraints, and their right-hand sides by ¢, and



obtain Zi":"(ay./a)ij:1,j=1,...,n. Now we replace variables 4 with 1 =4 /(eA™),
A™ =max(c, /a,), (a; #0), i=1,...,m+n After this, the coefficients of the objective
J

function and the constraints are: @, = (ea,A™)/c,, b =ebA™, i=l..m+n, j=1l,..n
We replace the coefficients of the objective function with 5, =E/b““”‘, i=1..m+n,

p™ =maxh. Next, we replace the variables 2 with A =b1 and obtain:

a,=a, /b, i=1,...,m+n, j=1,..n Finally, the problem (4) can be written in the
following form:

m+n

> = min, )

P
0<A <el, i=l...m+n,

m+n

Zalj/li =1, j=1..,n.
The corresponding dual problem is

n
ij —> max, x;2 0, j=1,...,n, (6)
J=1

n
Vi =Zal.jxj -1<0, i=1,....m+n.
j=1

The linear programming problem (5) is replaced with the exponential type
approximating function with the positive parameter ¢ :

m+n

p(x,e) = Z)Ej — gz exp((p a,x, —1- g)e”') = max,
J=l i=I J=1
):l.(fc,g) = exp((Zay.)Ej —1-g)e™"), i=L..,m+n, £>0.
J=

The exponential transformation of linear programming problems (1) with proofs and
examples are described in details in the publications [1-2]. In this paper, the
exponential transformation is applied to the dual problem with respect to the
problem (1). As ¢ >0 the optimal value of the approximating function ¢(x,¢), the

variables 1 and X, converges to the optimal solutions of the primal (5) and the dual

(6) linear problems: > "7 > " ", > % =2 x and 4 >4, %, —>x, where

j=1

x;, j=l..,n, A, i=1,..,m+n are the optimal solutions of the primal (5) and dual (6)
linear problems. Since ¢(x,¢) is strictly concave, the first order necessary and
sufficient conditions for ¥ to be a maximum can be written as follows:
0p(x,6)/0%, = " "a, A (%,6)-1=0, j=1..n Here the variables A(%,e)are the

exponential functions of the variables x,. The system of the necessary and sufficient



conditions can be simplified. Substituting the first order power series expansion of
A(%,€) with respect to ((z; a,%,-1)—¢), i=l..m+n for (%), we get

SR> M aa, -y " a,—e=0, j=l..,n As ¢ >0 we get an approximating system

of linear equations to calculate the approximate variables x;:

m+n m+n

n
Zkaaijaik :Zaw j=1...n. (7)
k=1 =1 i=1

The variables j;l.:z;:]aijfcj—lso are the approximation of the constraints y, <0 of

the problem (6). If the constraint y, is active, then 7, reaches its maximum value.
Accordingly largest variables 7, define » the optimal basis variables A of the
problem (5). On the other hand, smallest variables y, define m the optimal non-basis
variables 2 =0 of the problem (5) and 4 =0 of problems (4) and (3). These variables

determine the active constraints of the problem (3). The active constraints in turn
determine the optimal basis variables of the problem (1).

The description of the algorithm

The algorithm consists the following steps: 1) Convert the original problem (1) to
special form (5); 2) Solve the approximating system of linear equations (7) to
determine the variables X, ; 3) Calculate the approximating values of constraints j,: 4)

Identify the active constraints and the optimal basis variables of the original problem
(1); 5) Calculate the values of the optimal basis variables of the problem (1).

A numerical example

Application of the algorithm is illustrated by the following numerical example:

8%, +2X, +2x, + X, —> min, )
X, +3%, +0,2X;, + X, > 2,

4%, —2x, +x, —0,5%, > 4,

X, 20, j=1,...,4.



The solution of the original linear problem s Zjéj‘:9,7143,

=1 J

(fc;)z(l,1429 0,2857 0,0 0,0). The corresponding dual problem is

22; + 4):2 — max, (9)
A} +4):2 <8,

3%, —24,<2,

0,24 + 4, <2,

A —0,54,<1,

220, i=12.

Now we introduce the additional non-negative variables ﬂ; >0,i=3,...,6 to transform
the problem to the canonical form:

22; + 4):2 — max, (10)
2; +4):2 +)A3 =38,

34, =24, + A, =2,

O,ZﬂA1 +i2 +i5 =2,

A =054+ =1,

220, i=12.

Next, using equivalent transformations, we transform the problem to the form:

8,2AA1 +18,52;+6):3 +i4+i5+i6—>min, (11)
2; +4):2 +)A3 =38,

4AA1 +2):2 +):3 +):4 =10,

O,ZﬂA1 +i2 +i5 =2,

22A1 +3,5):2 +i3 +i6 =9,

4>0,i=1,...,6.

Finally, replacing of constants and variables, we transform the problem to the form:

6
YA —min, 0<A<e’, i=1...6, (12)
i=1
3,8320, +6,79577, +5,2384 1, =1,
12,26547, +2,71832, +4,1907, +25,14412, =1,
3,06642, +6,79574, +125,7205 4 = 1,
6,81417, +5,28551, +4,65634, + 27,9379, =1.



The approximating system (7) has the form:

88,3134x, +87,4376x, +57,9348x, +86,4286x, =15,867 ,
87,4376x, +807,6175x, +56,0828x, +117,4588x, = 44,3185,
57,9348x, +56,0828x, +15861,2369x, + 56,8135x, =135,5826 ,
86,4286x, +117,4588x, +56,8135x, +876,5766x, = 44,6939 .

The solution is (ij):(0,1022 0,0381 0,0079 0,0353). The approximating values of the
constraints are (7,)=(0,1241 0,0384 —0,1406 —0,0412 —0,0051 —0,0141). We will put
these values in the descending order: 3 =0,1241, y,=0,0384, p, =—0,0051, y, =—0,0141,
y,=-0,0412, $, =-0,1406 . The optimal basis variables of the problems (10), (11), (12)
correspond to largest j, 7,, ¥, 7. The optimal non-basis variables correspond to
smallest 7., 7,. These variables are additional for the first two inequalities of

problem (10). The values of j, =0, 74 =0 indicate that the first two inequalities are
the active constraints of the problem (9). These inequalities transformed to a system
of two equations with two variables i, 4,. The variables %, %, of the problem (8)

correspond to the two equations of the problem (9). These variables need to be
determined by solving the system of two equations with two variables. This is
possible if the variables x,, x, are the optimal non-basis variables, that are x, =0,
%, =0. Finally, we find the optimal values of the basis variables of the problem (8) by
solving the system:

X, +3x, =2,
4% —2%, =4.

A

The solution is " é% =9,7143, (£)=(1,1429 0,2857 0,0 0,0). Thus, we find the

variables of the optimal basis solution by solving the approximating system of the
linear equations with four constraints and four variables. To calculate the optimal
values of the basic variables we solve the system of the linear equations with two
variables.



Conclusion

To compare, we solve the problem (8) by the simplex method, which is an
iterative algorithm. The introduction of additional variables and the transition to

maximization leads to the canonical form:

—8x, —2x, — 2x, — X, = max,
X, +3%,+0,2x, + X, — X, =2,
4x, —2x, +x,—0,5x, —x, =4,
x;20, j=L...,4.

The maximum number of iterations for solving the simplex method is calculated by
formulacj:6!/(2!(6—2)!):15. This number depends essentially on the size of the

problem. The actual number of iterations is a priori unknown. Let us take variables
%,, X, as the starting basis. We transform the problem so that the coefficients of

these variables would form the unit matrix.

Table 1. The first iteration

X C n -8 2 2 1 0 0
) < b . . . . . .
basis basis ! X X, X3 X, Xs X
.)23 2 4,5455 4,0909 -0,4546 1 0 -0,4546 -0,9091
)’54 -1 1,0909 0,1818 3,0909 0 1 -0,9091 0,1818
Criterion K -0,3636 -0,1818 0 0 1,8182 1,6364

The initial basis solution is (fcj)z(o,o 0,0 4,4555 1,0909 0,0 0,0). The first value of the
objective function s z;éj ¥, =-10,1818. The minimum negative evaluation is
K =-0,3636, therefore the variable x, is introduced into the basis. The first column is

the key column. The minimum ratio 4 /a,, a, >0 corresponds to the first row.
Hence the first row is the key row. The variable x, is derived from the basis

variables. Now we divide the elements of the key row for the key element
a,, =4,0909 and add to the second row elements of the transformed key row,

multiplied by (-1)a,, =0,1818. New basis solution is obtained.

Table 2. The second iteration

- A A -8 2 2 -1 0 0

X; ¢ b . . . . . .
basis basis ! X Xy X3 X4 Xs X6

)%] -8 1,1111 1 -0,1111 0,2444 0 -0,1111 -0,2222
Xy -1 0,3889 0 3,1111 -0,0444 1 -0,8889 0,2222
Criterion K 0 -0,2222 0,0889 0 1,7778 1,5556

The solutionis >° ¢ % =-9,7778, (&,)=(L1111 0,0 0,0 0,8889 0,0 0,0).

j=1J



Table 3. The third iteration

%, A R T U S A
basis basis ! X, X, X5 Xy Xs X

)E] -8 1,1429 1 0 0,2429 0,0357 -0,1429 -0,2143
X, 2 0,2857 0 1 -0,0143 0,3214 -0,2857 0,0714
Criterion K 0 0,0857 0,0714 1,7143 1,5714

All the values K are non-negative here. The optimal solution is 24 ¢ X =-9,7143,
j=1 770
(fc;)z(l,1429 0,2857 0,0 0,0 0,0 0,0). The advantage of the non-iteration algorithm

is that the amount of computation is defined a priori by the dimension of the
problem.
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