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Linear programming problems 
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The classification of methods and algorithms for linear programming 
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Data preparation and transformation of the original problem 
 
 

Linear programming problem will be considered as follows: 

1

ˆ ˆ   
n

j j
j

c x min,  


                   (1) 

1

ˆˆ ˆ ,  1,..., ,
n

ij j i
j

a x b i m


   ˆ 0,   1,... ,   ,jx j n n m    

where ˆ 0,   1,...,jx j n   are the variables of the original problem, ˆ ,   1,...,jc j n  are 

the coefficients of the linear form, ˆ ,   1,..., ,   1,...,ija i m j n   are the coefficients of the 

constraints and ˆ ,   1,...,ib i m  are the right-hand sides of the constraints. It is assumed 
that (1) has a solution. The corresponding dual problem is 
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where ˆ ,   1,...,i i m   are the values of the original dual problem. Introducing 

additional non-negative variables ˆ 0,   1,..., ,i i m n    we transform the problem (2) 
to the canonical form: 
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The coefficients of the objective function, the coefficients of the constraints and 
the right-hand sides of constraints become positive as a result of equivalent 
transformations: 
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Further, the constants and the variables are replaced with some new ones as 
follows: divide the coefficients, the constraints, and their right-hand sides by jc  and 



obtain 
1

ˆ( ) 1,  1,..., .  m n
ij i ji

a c j n



     Now we replace variables î  with maxˆ ( ),i i ie    

max max( ),  ( 0),i j ij ijj
c a a    

  1,..., .i m n   After this, the coefficients of the objective 

function and the constraints are: max( ) ,ij ij i ia ea c  
 max ,i i ib eb


  1,..., ,i m n   1,..., .j n  

We replace the coefficients of the objective function with max ,i ib b b  1,..., ,i m n   
max max .ii

b b  Next, we replace the variables i  with i i ib   and obtain: 

a = ,  1,..., ,ij ij ia b i m n    1,..., .j n  Finally, the problem (4) can be written in the 

following form: 

1
    

m n

i
i

min,  




                    (5) 

10 ,i e    1,..., ,i m n   

1
1,    1,..., .

m n

ij i
i

a j n




   

The corresponding dual problem is 
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The linear programming problem (5) is replaced with the exponential type 
approximating function with the positive parameter  : 
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The exponential transformation of linear programming problems (1) with proofs and 
examples are described in details in the publications [1-2]. In this paper, the 
exponential transformation is applied to the dual problem with respect to the 
problem (1). As 0   the optimal value of the approximating function ( , )x  , the 
variables i and jx  converges to the optimal solutions of the primal (5) and the dual 

(6) linear problems: *
1 1

,m n m n
i ii i
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   and * *,   ,i i j jx x     where 
* ,   1,..., ,jx j n  *,   1,...,i i m n    are the optimal solutions of the primal (5) and dual (6) 

linear problems. Since ( , )x   is strictly concave, the first order necessary and 
sufficient conditions for x  to be a maximum can be written as follows:
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          Here the variables ( , )i x   are the 

exponential functions of the variables jx . The system of the necessary and sufficient 



conditions can be simplified. Substituting the first order power series expansion of 
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     1,...,i m n   for ( , )i x   , we get 
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       1,..., .j n  As 0   we get an approximating system 

of linear equations to calculate the approximate variables jx : 
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The variables 
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1 0n
i ij jj

y a x


     are the approximation of the constraints 0iy   of 

the problem (6). If the constraint iy  is active, then iy  reaches its maximum value. 
Accordingly largest variables iy  define n  the optimal basis variables i  of the 
problem (5). On the other hand, smallest variables iy  define m the optimal non-basis 
variables 0i   of the problem (5) and ˆ 0i   of problems (4) and (3). These variables 
determine the active constraints of the problem (3). The active constraints in turn 
determine the optimal basis variables of the problem (1). 
 
 
 

The description of the algorithm 
 
 
 

The algorithm consists the following steps: 1) Convert the original problem (1) to 
special form (5); 2) Solve the approximating system of linear equations (7) to 
determine the variables jx ; 3) Calculate the approximating values of constraints iy ; 4) 

Identify the active constraints and the optimal basis variables of the original problem 
(1); 5) Calculate the values of the optimal basis variables of the problem (1). 

 
 
 

A numerical example 
 
 
 

Application of the algorithm is illustrated by the following numerical example: 

1 2 3 4ˆ ˆ ˆ ˆ8 2 2 ,x x x x min                (8) 

1 2 3 4ˆ ˆ ˆ ˆ3 0,2 2,x x x x     

1 2 3 4ˆ ˆ ˆ ˆ4 2 0,5 4,x x x x     

ˆ 0,   1, ,4.jx j    



The solution of the original linear problem is 
4 *

1
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   *ˆ 1,1429   0,2857    0,0   0,0 .  jx   The corresponding dual problem is 
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ˆ 0,    1,2.i i    

Now we introduce the additional non-negative variables ˆ 0i  , 3, ,6i    to transform 
the problem to the canonical form: 
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Next, using equivalent transformations, we transform the problem to the form: 
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1 2 3 4
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ˆ  0,  1, ,6.i i     

Finally, replacing of constants and variables, we transform the problem to the form: 
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1 2 33,8329 6,7957 5,2384 1,      

1 2 3 41 2,2654 2,7183  4,1907 25,1441 1,         

1 2 53,0664 6,7957 125,7205 1,       

1 2 3 66,8141 5,2855 4,6563 27,9379 1 .        

 
 



The approximating system (7) has the form: 

1 2 3 4 88,3134 87,4376  57,9348 86,4286 15,867 ,x x x x        

1 2 3 4 87,4376 807,6175  56,0828 117,4588 44,3185 ,x x x x        

1 2 3 4 57,9348 56,0828 1 5861,2369 56,8135 135, 5826 ,x x x x        

1 2 3 4 86,4286 117,4588  56,8135 876,5766 44,6939 .x x x x        

The solution is  ˆ( ) 0,1022   0,0381   0,0079   0,0353jx  . The approximating values of the 

constraints are  ˆ( ) 0,1241   0,0384  0,1406  0,0412  0,0051  0,0141iy      . We will put 

these values in the descending order: 1ˆ  0,1241,y   2ˆ  0,0384,y   5ˆ  0,0051,y   6ˆ  0,0141,y   

4ˆ  0,0412,y   3ˆ  0,1406 .y   The optimal basis variables of the problems (10), (11), (12) 
correspond to largest 1 2 5 6,   ,   ,   .y y y y     The optimal non-basis variables correspond to 
smallest 3ˆ ,y 4ˆ .y  These variables are additional for the first two inequalities of 

problem (10). The values of 3ˆ 0,y   4ˆ 0y   indicate that the first two inequalities are 
the active constraints of the problem (9). These inequalities transformed to a system 
of two equations with two variables 1 2

ˆ ˆ,  .   The variables 1̂,x  2x̂  of the problem (8) 
correspond to the two equations of the problem (9). These variables need to be 
determined by solving the system of two equations with two variables. This is 
possible if the variables 3ˆ ,x  4x̂  are the optimal non-basis variables, that are 3ˆ 0,x   

4ˆ 0.x   Finally, we find the optimal values of the basis variables of the problem (8) by 
solving the system: 

1 2ˆ ˆ3 2,x x   

1 2ˆ ˆ4 2 4.x x   

The solution is 
4 *

1
ˆ ˆ 9, 7143,  jj jc x


     *ˆ 1,1429   0,2857    0,0   0,0 .  jx  Thus, we find the 

variables of the optimal basis solution by solving the approximating system of the 
linear equations with four constraints and four variables. To calculate the optimal 
values of the basic variables we solve the system of the linear equations with two 
variables. 
 
 
 
 
  



Conclusion 
 
 

To compare, we solve the problem (8) by the simplex method, which is an 
iterative algorithm. The introduction of additional variables and the transition to 
maximization leads to the canonical form: 

1 2 3 4ˆ ˆ ˆ2 ,ˆ8 2x x x x max      

1 2 3 4 5ˆ ˆ ˆ ˆ ˆ3 0,2 2,x x x x x     

1 2 3 4 6ˆ ˆ ˆ ˆ ˆ4 2 0,5 4,x x x x x     

 ̂ 0,   1, ,4.jx j    

The maximum number of iterations for solving the simplex method is calculated by 
formula   2

6 6!/ 2! 6 2 ! 1 5с    . This number depends essentially on the size of the 

problem. The actual number of iterations is a priori unknown. Let us take variables 

3ˆ ,x  4x̂  as the starting basis. We transform the problem so that the coefficients of 
these variables would form the unit matrix. 
 

Table 1. The first iteration 
 

ˆ jx  

basis 

ˆ jc  

basis îb  
-8 -2 -2 -1 0 0 

1x̂  2x̂  3x̂  4x̂  5x̂  6x̂  

3x̂  -2 4,5455 4,0909 -0,4546 1 0 -0,4546 -0,9091 

4x̂  -1 1,0909 0,1818 3,0909 0 1 -0,9091 0,1818 
Criterion K  -0,3636 -0,1818 0 0 1,8182 1,6364 

The initial basis solution is    ˆ 0,0   0,0    4, 4555  1 ,0909  0,0  0,0 jx  . The first value of the 

objective function is 
4

1
ˆ ˆ 10,1818.  jj jc x


  The minimum negative evaluation is 

0,3636,K    therefore the variable 1x  is introduced into the basis. The first column is 

the key column. The minimum ratio 1
ˆ ˆ/ ,i ib a  1ˆ 0ia   corresponds to the first row.  

Hence the first row is the key row. The variable 3x̂  is derived from the basis 
variables. Now we divide the elements of the key row for the key element

11ˆ 4,0909a   and add to the second row elements of the transformed key row, 
multiplied by 21ˆ( 1) 0,1818.a   New basis solution is obtained. 
 

Table 2. The second iteration 
 

ˆ jx  

basis 

ˆ jc  

basis îb  
-8 -2 -2 -1 0 0 

1x̂  2x̂  3x̂  4x̂  5x̂  6x̂  

1x̂  -8 1,1111 1 -0,1111 0,2444 0 -0,1111 -0,2222 

4x̂  -1 0,8889 0 3,1111 -0,0444 1 -0,8889 0,2222 
Criterion K  0 -0,2222 0,0889 0 1,7778 1,5556 

The solution is 
4

1
ˆ ˆ 9,7778,  j jj
c x


      ˆ 1,1111   0,0    0, 0   0,8889   0,0   0,0 .jx    



 
Table 3. The third iteration 

 
ˆ jx  

basis 

ˆ jc  

basis îb  
-8 -2 -2 -1 0 0 

1x̂  2x̂  3x̂  4x̂  5x̂  6x̂  

1x̂  -8 1,1429 1 0 0,2429 0,0357 -0,1429 -0,2143 

2x̂  -2 0,2857 0 1 -0,0143 0,3214 -0,2857 0,0714 
Criterion K  0 0 0,0857 0,0714 1,7143 1,5714 

All the values K  are non-negative here. The optimal solution is 
4 *

1
ˆ ˆ 9,7143,j jj
c x


 

   *ˆ 1,1429   0, 2857    0,0   0,0   0,0   0,0 .jx   The advantage of the non-iteration algorithm 

is that the amount of computation is defined a priori by the dimension of the 
problem. 
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